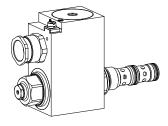


Proportional 3-way flow control valve Screw-in cartridge

- Direct operated, pressure compensated
- $Q_{max} = 40 \text{ l/min}, p_{max} = 350 \text{ bar}$
- Q_{N max} = 25 l/min

M22x1,5


ISO 7789

 $\langle Ex \rangle$ II 2 G Ex db IIC T6, T4

⟨Ex⟩ II 2 D Ex tb III C T80°C, T130°C

Ex I M2 Ex db I Mb

Class I Division 1
Class I Zone 1

DESCRIPTION

For explosion-hazard zones

Direct operated, pressure compensated proportional flow control valve, as a screw-in cartridge with a thread M22x1,5 for cavity acc. to ISO7789. A special surface treatment guarantees a good protection against corrosion and wear as well as very good low-friction characteristics of the pressure compensating- and throttle spool. The solenoid coil is zinc-/nickel-coated.

The flameproof enclosures prevents an explosion in the interior from getting outside.

The design prevents a surface temperature capable of igniting.

FUNCTION

The 3-way flow control valve serves for maintaining the speed of a consumer constant independent of the load. Superfluous pump output flow is fed into the return flow system in a cost saving manner, and as a result, prevents an overheating of the hydraulic system. The power controlled, proportional solenoid running in oil acts directly on the throttle spool, which opens the throttle segments in the cartridge body. Proportional to the current demand of the proportional solenoid, the throttle aperture changes, and with this the volume flow. In case of a current-free solenoid, the throttle spool is held in closed position by a spring. For driving the valve, Wandfluh proportional amplifiers are available (see Register 1.13).1.13).

APPLICATION

Proportional flow control valves are suitable for feed control systems, where the consumer flow has to be maintained constant with a changing load. These valves are suitable for applications in explosion-hazard zones, open cast and also in mines. The facility for electric remote controlling of the valve in conjunction with process control systems enables economic problem solutions with repeatable sequences. Installation of the screw-in cartridge in control blocks.

TYPE CODE

						QDBPI	M22 - 🔲 - [/ L15 /	 # [
Flow control valve									
3-way						_			
Proportional, Explosion proof execution Ex d									
Screw-in cartridge M22x1,5									
Nominal volume flo	ow rate Q _N	8 l/min 16 l/min 25 l/min	8 16 25						
Nominal voltage U	N	12 VDC 24 VDC		G12 G24					
Nominal power P _N		15W		Ambient temp	o. by:				
Certificate	ATEX, IECEx,	CCC, EAC Australia	AU	UL/CSA	UL	MA	MA		
Sealing material		NBR FKM (Viton)		D1					
Design-Index (Sub	ject to change)							_

GENERAL SPECIFICATIONS

Description 3-way proportional flow control valve
Construction Screw-in cartridge for cavity acc. ISO 7789

Operations Proportional solenoid
Mounting Screw-in thread M22x1,5

Ambient temperature -25...70 °C (operation as T1...T4/T130 °C)

Mounting position any

Fastening torque $M_D = 50 \text{ Nm for screw-in cartridge}$

 $M_D^D = 9 \text{ Nm for knurled nut}$

Weight m = 1,9 kgFlow direction see symbol

CERTIFICATES

	Surface	Mining	Standard -25°C to	M248 Electronic
ATEX	х	Х	х	х
IECEx	х	Х	х	х
CCC	х	Х	Х	х
EAC	х	Х	х	х
Australia	х	Х	х	
MA		Х	х	х
UL/CSA	х		х	

The certificates can be found on www.wandfluh.com

ELECTRICAL SPECIFICATIONS

Proportional solenoid, wet pin push type, Construction

pressure tight

Standard nominal voltage $U_N = 12 \text{ VDC}$, 24 VDC

12VDC 24VDC

Limiting current L15/50 °C $I_{G} = 950$ mA 450 mA L15/70 °C $I_{G} = 910$ mA 420 mA

+10% of rated voltage

Voltage tolerance

Relative duty factor 100% ED

Protection class IP67 acc. to EN 60 529 Connection/Power supply Through cable gland for cable Ø 6,5...14 mm

Temperature class: T1...T4 (acc. to EN 60079-0)

Nominal power: 15W

For further electrical characteristics, refer to the data sheet of the so-

lenoid coil: 1.1-183

HYDRAULIC SPECIFICATIONS

Fluid Mineral oil, other fluid on request

Contamination efficiency ISO 4406:1999. class 18/16/13

(Recommended filtration grade

ß 6...10 ≥ 75)

see data sheet 1.0-50/2 12 mm²/s...320 mm²/s

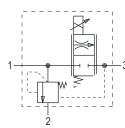
Viscosity range -25...+70 °C (operation as T1...T4/T130 °C) Fluid temperature

 $p_{max} = 350 \text{ bar}$ $Q_N = 8/16/25 \text{ l/min}$ Peak pressure Nominal volume flow $Q_{max} = 40 \text{ l/min } (1 \rightarrow 2)$ Max. Volume flow $Q_{min} = 0,1 \text{ I/min}$ Min. Volume flow

see characteristics Leakage volume flow Repeatability ≤ 3 %*

≤ 7 %* Hysteresis

* at optimal dither signal

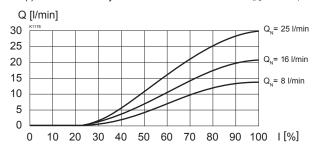

SYMBOLS

simplified

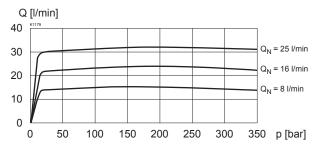
detailed

SECURITY OPERATED

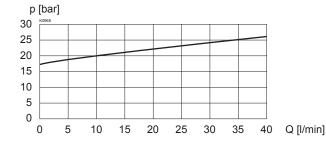
The solenoid coil must only be put into operation, if the requirements of the operating instructions supplied are observed to their full extent.

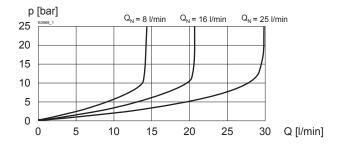

In case of non-observance, no liability can be assumed.

INSTALLATION

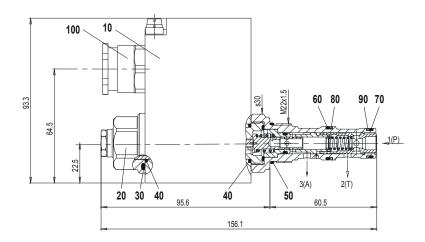

For stack assembly please observe the remarks in the operating instructions

CHARACTERISTICS Oil viscosity $v = 30 \text{ mm}^2/\text{s}$

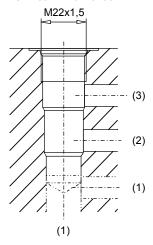

Q = f (I) Volume flow adjustment characteristics $1 \rightarrow 3$ ($p_3 = 200 \text{ bar}$)


Q = f (p) Volume flow pressure characteristics (I = I_G)

 $\Delta p = f(Q)$ Pressure drop-volume flow characteristics $1 \rightarrow 2 (I = 0 \text{ mA})$



 $\Delta p = f(Q)$ Pressure drop-volume flow characteristics $1 \rightarrow 3$ (I = I_o)



DIMENSIONS/SECTIONAL DRAWINGS

Cavity drawing acc. to ISO 7789–22–04–0–98

For detailed cavity drawing and cavity tools see data sheet 2.13-1004

PARTS LIST

Position	Article	Description	
10	263.6	Slip-on coil MKY45/18x60	
15	253.8000	Plug with integrated manual override HB4,5	
20	154.2603	Knurled nut Ex	
30	160.2251	O-ring ID 25,07x2,62 (NBR)	
40	160.2170	O-ring ID 17,17x1,78 (NBR)	
50	160.2188 160.6188	O-ring ID 18,77 x 1,78 (NBR) O-ring ID 18,77 x 1,78 (FKM)	
60	160.2156 160.6156	O-ring ID 15,60 x 1,78 (NBR) O-ring ID 15,60 x 1,78 (FKM)	
70	160.2140 160.6141	O-ring ID 14,00 x 1,78 (NBR) O-ring ID 14,00 x 1,78 (FKM)	
80	049.3196	Backup ring RD 16,1x19x1,4	
90	049.3176	Backup ring RD 14,1x17x1,4	
100	111.1080	Cable gland brass M20	

STANDARDS

Cartridge cavity	ISO 7789	
Explosion protection	Directive 2014/34/EU (ATEX)	
Flameproof enclosure	EN/IEC/UL 60079-1,31	
Cable entry	EN 60079-0, 1, 7, 15, 31	
Protection class	EN 60 529	
Contamination efficiency	ISO 4406	

ACCESSORIES

Flange-/sandwich plate NG6	Data sheet 2.6-842
Line mount body Data sheet	2.9-210
Proportional amplifier	Register 1.13

Technical explanation see data sheet 1.0-100