

PowrFlow[™] PVR Series Vane Pumps

POWRFLOW[™] PVR SERIES VANE PUMPS

PRESSURE COMPENSATED VANE PUMPS FOR THE MOST DEMANDING APPLICATIONS

What Makes PowrFlow™ PVR Vane Pumps Your Best Buy?

Continental Hydraulics PowrFlow[™] PVR Vane Pumps deliver the rugged, reliable performance and value you've come to expect in all our

products. They outperform sensitive piston pumps in harsh environments. PVR Vane Pumps deliver faster

response, and require less external

compensation compared to fixed

displacement designs.

Balanced Vane Tip Loading Acts through the entire pumping cycle

to extend ring and vane life.

Use PVR Vane pumps in tough applications such as brick and block plants, poultry processing systems, foundries, and mines.

Features and Benefits

- I 1500 PSI Rated at Full Rated Flow
- 4 to 70 Gallon Sizes
- 100% Tested
- Three Year Warranty

Direct Spring Operated Compensator

Provides fast pressure compensation for variable system demands. Eliminates sensitive hydraulic assist passages or valves that are prone to clogging.

Patented Pressure Balanced Thrust Plates

Precision machining results in pump efficiencies up to 90%, eliminates shims and spacers, simplifies maintenance.

Heavy Forged One-Piece Rotor Shaft

Built strong and rigid to take system loads with minimal deflection, for increased pump life.

Hydrodynamic Journal Bearings


There's no shaft-to-bearing contact, so pump life is virtually unlimited - not determined by B-10 rating.

Quiet Operation Computer-designed porting

reduces noise at all pressure and flow levels. With noise levels as low as 68 dBa (NFPA T3.9.12M-1970 (R1981) tested) there's little or no need for noise enclosures.

Patented Walking Ring

A unique indexing cam ring rotates slightly every time output changes. Wear is distributed evenly around the entire ring inside surface. You get up to 10 times longer pump life than with conventional fixed-ring designs.

HYDRAULICS.

How A Vane Pump Works	2
SPECIFICATIONS General Specifications	3
PVR VANE PUMPS PVR-1 Series	9-17 18-26
CONTROL OPTIONS Features/Benefits Dual Pressure and Dual Volume Controls PVR-15 Control Options PVR-50 Control Options	36-38 39-44
ACCESSORIES PVR-6 and PVR15 Foot Mounting Brackets PVR-50 Foot Mounting Brackets Bolt Kits PVR-1 Manifold PVR-15 Manifold Mounting Flanges Pump Mechanical Accessories Transition Plates Air Bleed Valve Tandem Pump Options	49-50 51 52 53 54-55 55 56-57 58-59

1

HOW A VANE PUMP WORKS

How It Works

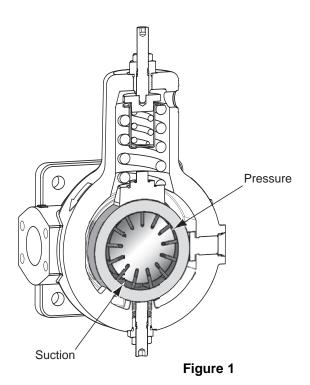
Continental Hydraulics' variable volume, pressure displacement, pressure compensated vane pumps are highly efficient and reliable sources of hydraulic power. Figures 1 and 2 show how the moving cam ring provides variable volume and constant pressure.

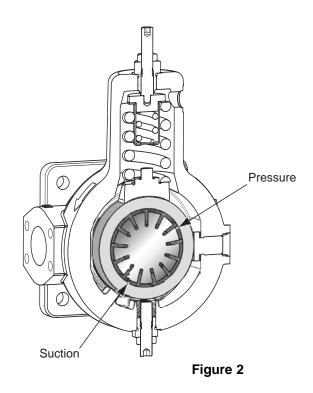
As the rotor turns clockwise, the volume between two adjacent vanes (segment) increases at the suction porting. When these segments enter the pressure port area, the volume is reduced and forces the fluid out through the pressure port.

Maximum output occurs when the cam is in the extreme eccentric position (Figure 1). When system requirements are less than maximum pump output, system pressure forces the ring up (against the spring), reducing eccentricity and resulting in less flow.

Constant pressure from zero to full displacement is maintained by the spring. When system volume demand falls to zero, the system pressure drives the ring to a concentric position (Figure 2). This changes the displacement to zero while system pressure is maintained.

Quiet Operation


Geometry of porting combined with precision-fitting vanes and moving parts make Continental pumps among the most quiet in the industry. Sound levels range from below 68 dBa for 6 gpm models when tested in accordance with NFPA Recommended Standard T3.9.1M-1970 (R1981).


A More Efficient Pump

Continental pumps produce only the flow the system demands at any one time. This results in less heat generation, fewer system components, smaller or no heat exchanger and does not require a high pressure bypass. The result is a simpler, more energy efficient system that accurately and efficiently matches fluid power volume to the task while maintaining constant pressure in the system.

Options and Accessories

Continental pumps may be tandem mounted to achieve multiple pump operation from a single power source for separate or auxiliary circuits. Pump options include handwheel pressure and volume controls; dual volume and dual pressure control combinations, plus a variety of mounting arrangements.

GENERAL SPECIFICATIONS

GENERAL SPECIFICATIONS

Recommended Fluids

Petroleum base and most phosphate ester fluids, water glycols and emulsions with water content not exceeding 40%. Consult the factory for other fluids.

Viscosity

Maximum at	
Start-Up	.1000 SUS (220 CS)
Optimal	175 SUS (40 CS)
Limits	See Chart Below

Start-up at 1000 SUS (220 CS) is intended to be used for warm-up only. Actual hydraulic circuit should not be attempted above 400 SUS (90 CS). Be certain the entire hydraulic circuit has been warmed up before full flow, full pressure application begins.

Operating Temperature

Fluid temperatures up to 160° F. (71° C.) will not appreciably affect pump performance as long as fluid viscosity is not allowed to drop too low. However, from a safety standpoint, temperatures above 130° F. (54° C.) are not recommended.

Specified operating viscosities must be followed for optimum life and performance. For continuous operating temperatures above 140° (60° C.), consult the fluid manufacturer for correct fluid at elevated temperatures.

Filtration

The following recommendations are for maximum service life. Consult with your fluid and filter manufacturer for concurrence.

Suction

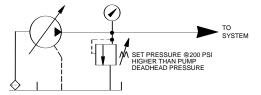
Return

ISO 18/15/13 (25 micron) to 1000 psi (69 bar) ISO 16/13/11 (10 micron) to

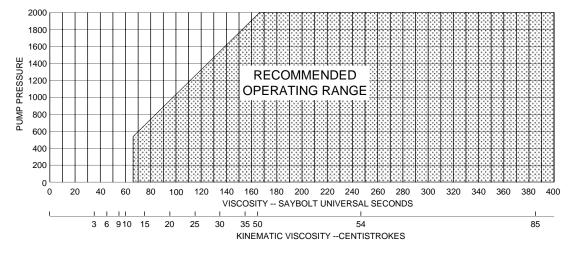
2000 psi (138 bar)

Drive Coupling

Jaw-type with flexible web is recommended. Tire-type flexing elements and chain-type are **NOT** recommended. For belt, chain and gear drives, consult the factory.


Drive Shaft Alignment

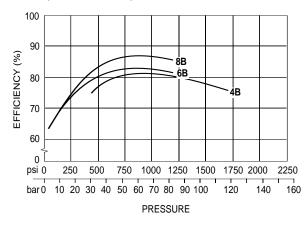
Pump and motor shaft alignment must be within .003" (.08 mm) TIR for maximum bearing life.

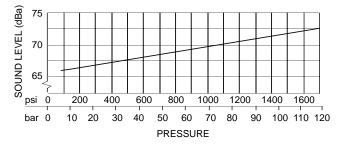

Relief Valves

A relief valve is not required or necessary for pump outlet pressures less than 1500 psi (103 bar). For pressures greater than 1500 psi (103 bar), it is recommended that a directoperated, rapid response differential piston relief valve be used to relieve pressure spikes and/or surges. Set the relief valve approximately 200 psi (14 bar) higher than the pump setting.

Typical Relief Valve Application Schematic

Recommended Operating Range


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED


Manifold Mounted

OVERALL EFFICIENCY

1750 rpm at Full Displacement

TYPICAL SOUND LEVEL @ 1750 rpm

TYPICAL PERFORMANCE SPECIFICATIONS

				PU	IMP SI	ZE	
				4B	6B	8B	
VOI	LUMETRIC	cu	in./rev.	0.7	0.9	1.2	
DIS	PLACEMENT*		ml/rev.	11.5	14.8	19.7	
		91.5 psi	gpm	5	7	9.5	
PUN	MP DELIVERY	6.3 bar	lpm	19	26.5	36	
AT 1	1750 RPM*	rated	gpm	4	6	8	
		pressure	lpm	15.1	22.8	30.5	
		Max.	psi	1500	1000	1000	
CO	MPENSATED		bar	103	69	69	
	ESSURE	Rated	psi	1500	1000	1000	
	NGES		bar	103	69	69	
	NOLU	Min.	psi	400	100	100	
			bar	28	7	7	
OPF	ERATING	<u>N</u>	800				
	EDS**		ted rpm	1750			
_	_		ax. rpm		3600		
	VER INPUT AT RATI	ED (1750 r		5	5	6	
FLC	W & PRESSURE		kW	3.7	3.7	4.4	
		Max.	psi				
_			bar	0.7			
N N	PRESSURE Creatifi	Min.	in./Hg		7		
Ĕ	Specifi	c Gravity <			-0.25		
SUCTION		Min.	in./Hg		5		
Ω		c Gravity >			-0.17		
	FLUID	Max.	ft./sec.		5		
	VELOCITY		m/sec.		1.5		
Z	NOMINAL FLOW	Max.	<u>cipm</u>	65	36	55	
A A	AT DEADHEAD	Pressure		1065	600	900	
Ö	PRESSURE	Min.	<u>cipm</u>	25	10	24	
ш		Pressure	mlpm	410	170	390	
Ř	MAXIMUM CASE		psi		<u> 10 </u> 0.7		
<u> </u>	PRESSURE		bar				
WE	IGHT		lbs.				
			kg		9		

NOTES:

Volumetric displacement is measured displacement at 91.5 psi (6.3 bar) and rated rpm. Volumetric displacement varies with both pressure and rpm. Flow rates at any rpm other than the rated rpm may be approximated as follows:

 $Q_2 = Q_1 (N-142)/1667$ where $Q_1 = Flow$ (gpm) at rated rpm at 91.5 psi (6.3 bar).

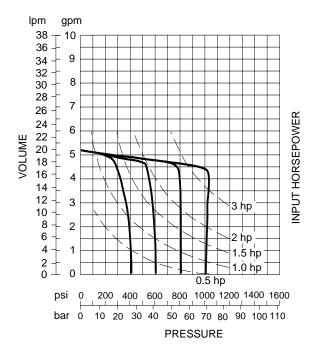
Q₂ = Flow (gpm) at N rpm.

N = rpm at which Q_2 is to be determined.

6B - Maximum rpm at full displacement - 2800 rpm. For higher rpms up to 3600 rpm, pump displacement must be reduced to limit flow to 9.5 gpm (36 lpm) maximum.

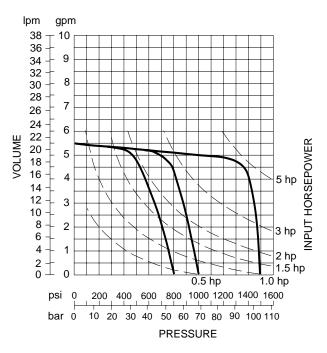
 8B - Maximum rpm at full displacement - 2100 rpm. For higher rpms up to 3600 rpm, pump displacement must be reduced to limit flow to 9.5 gpm (36 lpm) maximum.

PRESSURE and VOLUME ADJUSTMENT SENSITIVITY

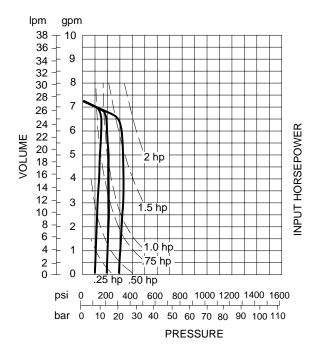

		PUMP SIZE	4B		6B			8B			
		PRESSURE CODE	10	15	03	06	10	03	06	10	
PRESSURE	Press Cha	nge/Turn psi (bar)	255 (17.8)	270 (18.6	115 (7.9)	210 (14.5)	240 (16.5)	115 (7.9)	210 (14.5)	240 (16.6)	
ADJUSTMENT	Max.Torqu	ft./lbs.(kg/m)	4.0 (0.55)	6.0 (0.83)	1.4 (0.19)	2.6 (0.36)	4.0 (0.55)	1.4 (0.19)	2.6 (0.36)	4.0 (0.55)	
VOLUME	Flow Char	nge/Turn gpm (lpm)	3.4 (*	12.5)		4.6 (17.4)			4.6 (17.4)		
	Min. Flow	Adjust. gpm (lpm)	1.25	1.25 (4.7)		1.25 (4.7)			1.25 (4.7)		
ADJUSTMENT	Max. Torq	ue ft./lbs. (kg/m)	2.5 (0	2.5 (0.34)		1.0 (0.14)		1.0 (0.14)			

CAUTION: Turning the Maximum Volume Control in too far can force the cam ring over-center, causing damage.

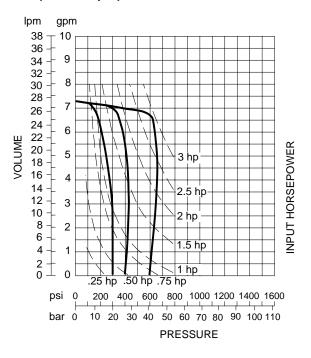
4


NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

4B10 (at 1750 rpm)

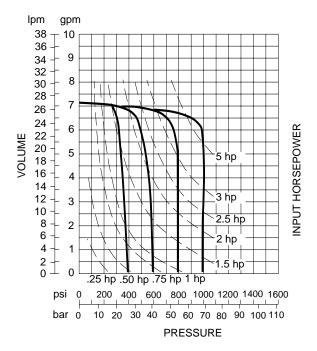


NOTE: Deadhead horsepower is read from curves at 0 gpm flow and pressure compensator setting psi.


4B15 (at 1750 rpm)

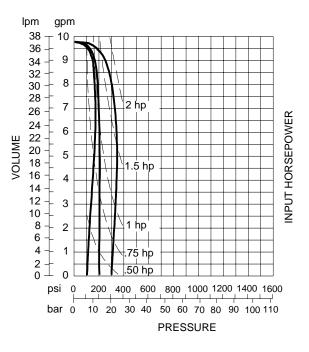
6B03 (at 1750 rpm)

6B06 (at 1750 rpm)

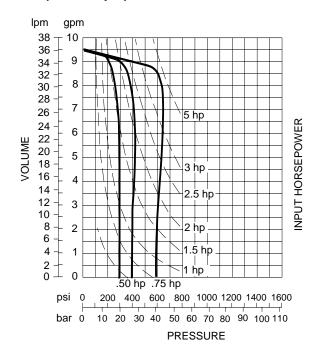


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

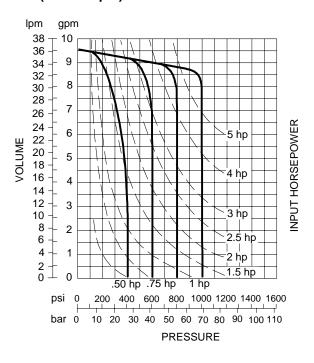
NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.


NOTE: Deadhead horsepower is read from curves at 0 gpm flow and

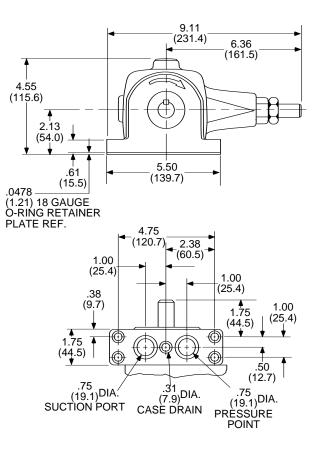
6B10 (at 1750 rpm)

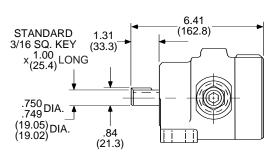


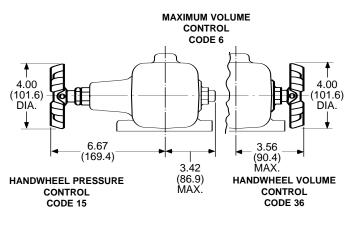
pressure compensator setting psi.


8B03 (at 1750 rpm)

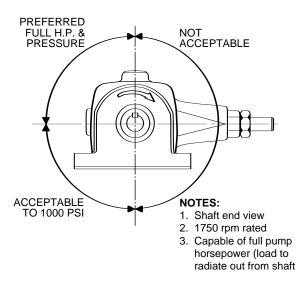
8B06 (at 1750 rpm)




8B10 (at 1750 rpm)

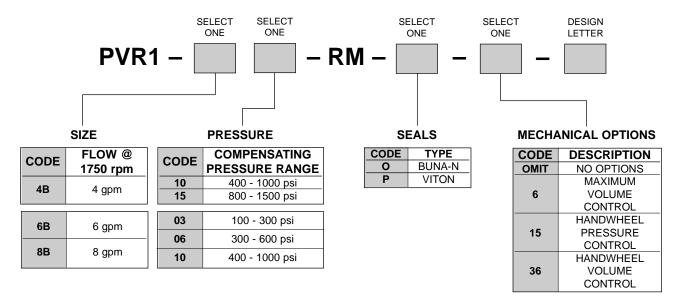

PUMP DIMENSIONS

Dimensions shown in: Inches (millimeters) HYDRAIII ICS



MECHANICAL OPTIONS

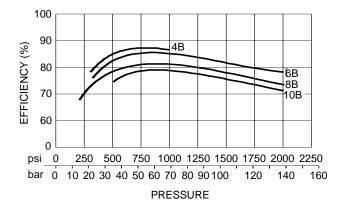
SIDE LOAD DRIVES


i.e. Belt, Chain, Gear

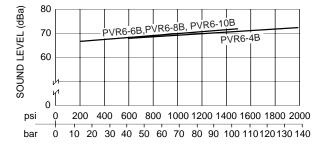
VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

ORDERING INFORMATION

Right Hand (CW) Rotation



TYPICAL ORDERING CODE: **PVR1-6B10-RM-0-1-I**



OVERALL EFFICIENCY

1750 rpm at Full Displacement

TYPICAL SOUND LEVEL @ 1750 rpm

TYPICAL PERFORMANCE SPECIFICATIONS

						PUM	P SIZE	
					4B	6B	8B	10B
VC	DLUMETRIC		cu.	in./rev.	0.7	0.9	1.2	1.4
DI	SPLACEMEN	NT*		ml/rev.	11.5	14.8	19.7	23.1
			91.5 psi	gpm	5.2	7	9	11
PU	JMP DELIVE	RY	6.3 bar	lpm	19.7	26.5	34	41
AT	1750 RPM*		rated	gpm	4	6	8	10
			pressure	lpm	15.1	22.7	30.3	38
			Max.	psi	2000	2000	2000	1000
0	COMPENSATED PRESSURE RANGES		Wax.	bar	138	138	138	69
			Rated	psi	2000	2000	2000	1000
			Raleu	bar	138	138	138	69
RP			Min.	psi	500	300	200	300
			IVIIII.	bar	35	20	14	20
	PERATING		Mi	n. rpm	800			800
-	PEEDS**	Rate	ed rpm	1750			1750	
5P	EED2		Ma	x. rpm		3600		1800
PC	WER INPU	r at r	ATED	hp	7	9	11	8
FL	OW & PRES	SURE	E (1750 rp	m) kW	5.2	6.7	8.2	5.9
			Max.	psi		20		10
	PRESSURE		IVIAX.	bar		1.4		
Z	FRESSURE	=	Min.	in./Hg		7	7	
SUCTION	S	Specifi	c Grav. <	1 bar		-0.2	25	
2			Min.	in./Hg		Ę	5	
പ		Specifi	c Grav. >	1 bar		-0.1	17	
	FLUID		Max.	ft./sec.		Ę	5	
	VELOCITY			m/sec.		1.	.5	
z	NOMINAL F		Max.	cipm	31	31	3	57
R	AT DEADHE		Pressure	mlpm	500	500	60	0
Ь	PRESSURE		Min.	cipm	10	10	2	4
CASE CRAIN	FRESSURE	-	Pressure	mlpm	170	170	39	0
AS	MAXIMUM	CASE		psi	10			
O	PRESSURE			bar	0.7			
WEIGHT Ibs.				lbs.	20			
				kg		g		

NOTES:

Volumetric displacement is measured displacement at 91.5 psi (6.3 bar) and rated rpm. Volumetric displacement varies with both pressure and rpm. Flow rates at any rpm other than the rated rpm may be approximated as follows:

 $Q_2 = Q_1$ (N-142)/1667 where $Q_1 =$ Flow (gpm) at rated rpm at 91.5 psi (6.3 bar).

Q₂ = Flow (gpm) at N rpm.

N = rpm at which Q_2 is to be determined.

When operating above 1500 psi (103 bar), it is recommended that a directacting differential relief valve be used at the pump to relieve pressure spikes and surges.

6B - Maximum rpm at full displacement - 2800 rpm. For higher rpms up to 3600 rpm, pump displacement must be reduced to limit flow to 9.5 gpm (36 lpm) maximum.

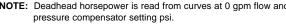
8B - Maximum rpm at full displacement - 2100 rpm. For higher rpms up to 3600 rpm, pump displacement must be reduced to limit flow to 9.5 gpm (36 lpm) maximum.

10B - Maximum rpm at full displacement - 1800 rpm. For higher rpms up to 3600 rpm, pump displacement must be reduced to limit flow to 9.5 gpm (36 lpm) maximum.

PRESSURE and VOLUME ADJUSTMENT SENSITIVITY

		PUMP SIZE	4B	6B	6B	8B	8B	10B	6B	8B
		PRESSURE CODE	20	06	15	06	15	10	20	20
PRESSURE	Press Cha	inge/Turn psi (bar)	275 (19.0)	200 (13.7)	260 (17.9)	200 (13.7)	260 (17.9)	235 (16.2)	360 (24.9)	250 (17.2)
ADJUSTMENT	Max.Torqu	ft./lbs.(kg/m)	8.0 (1.10)	4.01 (0.55)	6.0 (0.83)	4.0 (0.55)	6.8 (0.83)	5.0 (0.89)	6.0 (0.83)	6.0 (0.83)
VOLUME	Flow Char	nge/Turn gpm (lpm)	3.4 (12.9)	4.6 (17.4)	4.6 (17.4)	4.6 (17.4)	4.6 (17.4)	4.6 (17.4)
VOLUME ADJUSTMENT	Min. Flow	Adjust. gpm (lpm)	1.25 (3.78)	1.25	(3.78)	1.25 ((3.78)	1.25 (3.78)	1.25 (3.78)	1.25(3.78)
	Max. Torq	ue ft./lbs. (kg/m)	4.0 (0.55)	2.5	(0.34)	2.5 (0.34)	1.0 (0.34)	1.0 (0.34)	1.0 (0.34)

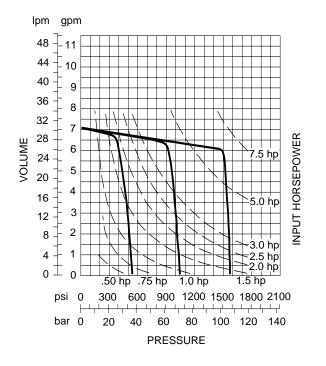
9

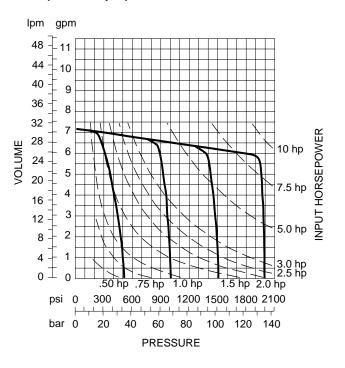

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

NOTE: Deadhead horsepower is read from curves at 0 gpm flow and

6B06 (at 1750 rpm)


lpm gpm 48 11 44 10 40 9 36 8 32 7 NPUT HORSEPOWER 28 VOLUME 6 24 5 10 hp 20 4 16 3 12 7.5 hp 2 8 5.0 hp 1 4 3.0 hp 0 0 2.5 hp 50 hp 75 hp 2.0 hp 300 600 900 1200 1500 1800 2100 0 psi ┶┲╧╌┹┲╧╌╋ bar 0 20 40 60 80 100 120 140 PRESSURE


lpm gpm 38 10 36 9 34 32 8 30 28 7 26 24 6 22 VOLUME INPUT HORSEPOWER 20 5 3 hp 18 16 4 14 2.5 hp 12 3 10 2 hp 8 2 6 1.5 hp 4 1 2 1 hp 0 0 25 hp .50 hp .75 hp 200 400 600 800 1000 1200 1400 1600 0 psi 10 20 30 40 50 60 70 80 90 100 110 bar 0 PRESSURE

6B15 (at 1750 rpm)

4B20 (at 1750 rpm)

6B20 (at 1750 rpm)

CAUTION: Turning the Maximum Volume Control in too far can force the cam ring over-center, causing damage.

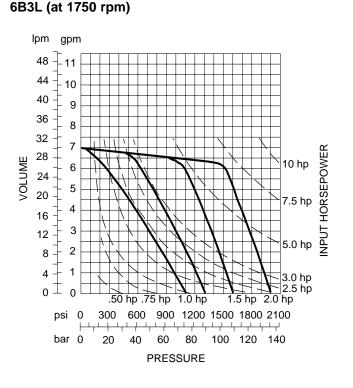
NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

NOTE: Deadhead horsepower is read from curves at 0 gpm flow and pressure compensator setting psi.

6B5L(at 1750 rpm)

- 11

10


9

lpm gpm

48

44

40

36 8 32 7 28 VOLUME 6 24 5 20 4 16 3 12 2 8 1 4 0 0

.75 hp

60

PRESSURE

1.0 hp

80

600 900 1200 1500 1800 2100

100 120 140

50 hp

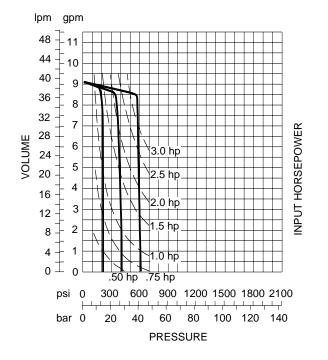
40

300

20

HORSEPOWER

INPUT

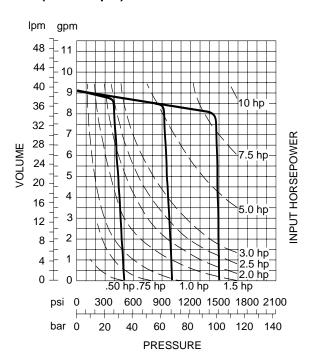

10 hp

7.0 hp

5.0 hp

3.0 hp 2.5 hp

8B06 (at 1750 rpm)

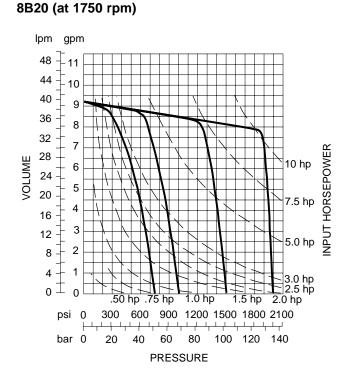


8B15 (at 1750 rpm)

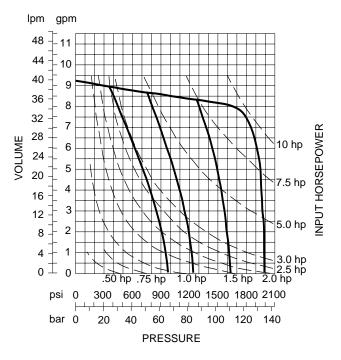
psi

bar 0

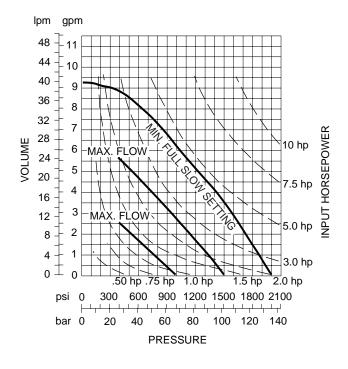
0

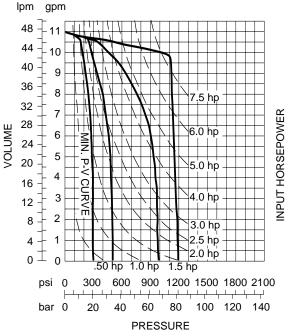


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED


NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

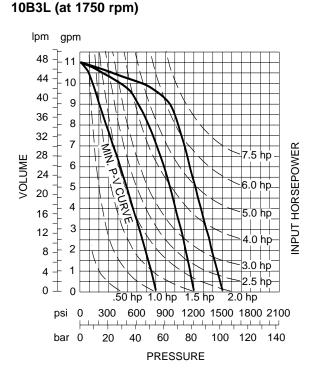
NOTE: Deadhead horsepower is read from curves at 0 gpm flow and

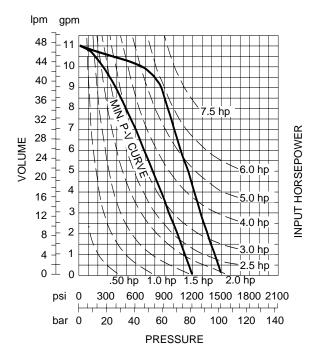

8B3L (at 1750 rpm)


pressure compensator setting psi.

8B5L (at 1750 rpm)

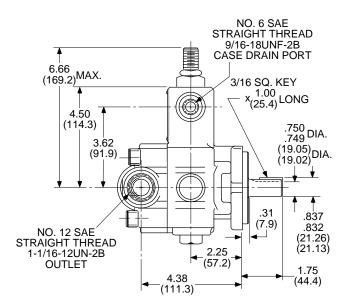
10B10* (at 1750 rpm)

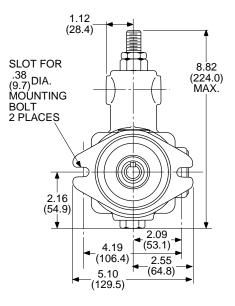


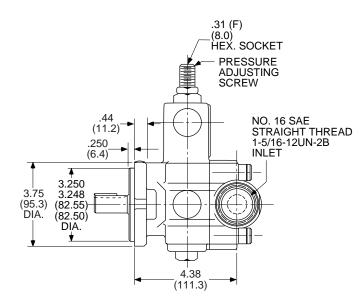

* NOTE: Not to be used with water, glycol or emulsion fluids.

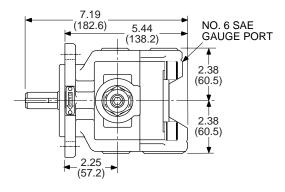
NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

NOTE: Deadhead horsepower is read from curves at 0 gpm flow and pressure compensator setting psi.

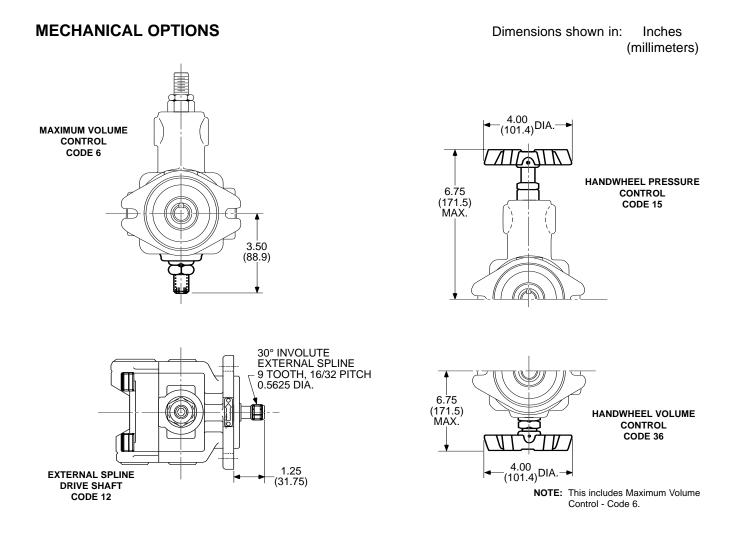

10B5L(at 1750 rpm)




VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

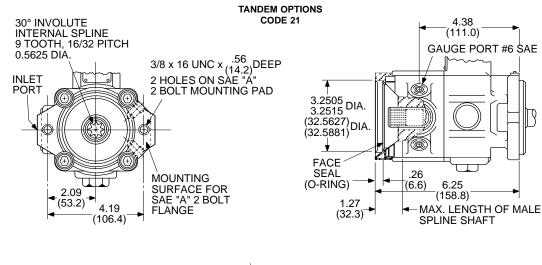

PUMP DIMENSIONS

Dimensions shown in: Inches (millimeters)



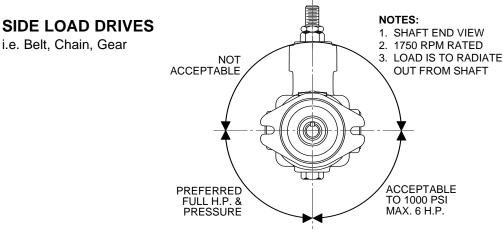
HYDRAULICS

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

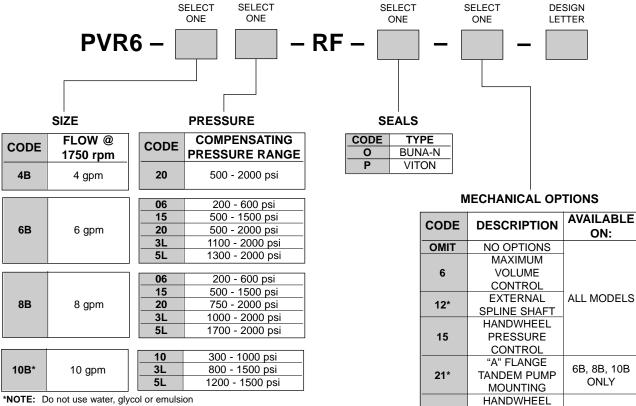


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

MECHANICAL OPTIONS


Dual pump operation without additional mounting flanges and couplings.

Permits mounting of another PVR6 or PVA6 pump (with Code 12*) or any SAE "A" -bolt flange mount pump incorporating a 30° involute, 16/32 pitch, 9 tooth external spline drive shaft. Maximum rating of internal spline is 8-1/2 hp at 1750 rpm.


Dimensions shown in:

Inches (millimeters)

ORDERING INFORMATION

Right Hand (CW) Rotation

fluids with the PVR6-10B pump.

*NOTE: For PVR6-4B Code 21 or 1221, consult the factory for price and delivery.

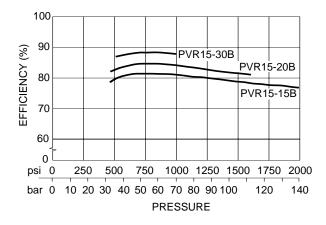
ALL MODELS

VOLUME

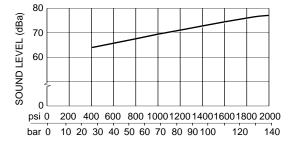
CONTROL

36

TYPICAL ORDERING CODE: PVR6-8B15-RF-0-1-H



VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



OVERALL EFFICIENCY

1750 rpm at Full Displacement

TYPICAL SOUND LEVEL @ 1750 rpm

PRESSURE and VOLUME ADJUSTMENT SENSITIVITY

		PUMP SIZE	15B	20B	30B
PRESSURE	Press Change/Turn	psi (bar)	230 (16.0)	310 (21.0)	230 (16.0)
ADJUSTMENT	Max.Torque	ft./lbs.(kg/m)	15.0 (2.0)	15.0 (2.0)	9.0 (1.2)
VOLUME	Flow Change/Turn	gpm (lpm)	10.0 (38.0)	10.0 (38.0)	13.0 (49.0)
ADJUSTMENT	Min. Flow Adjust.	gpm (lpm)	2.0 (7.5)	2.0 (7.5)	3.5 (13.0)
ADJUSTMENT	Max. Torque	ft./lbs. (kg/m)	21.0 (3.0)	29.0 (4.0)	21.0 (3.0)

CAUTION: Turning the Maximum Volume Control in too far can force the cam ring over-center, causing damage.

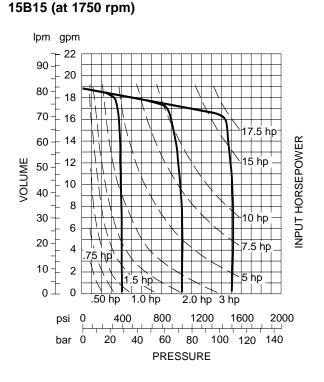
TYPICAL PERFORMANCE SPECIFICATIONS

				PL	IMP SI	ZE
				15B	20B	30B
VO	LUMETRIC	cu	. in./rev.	2.4	2.8	4.3
DIS	SPLACEMENT*		ml/rev.	39.3	46	70.5
		91.5 psi	gpm	18.7	21.6	32.0
PU	MP DELIVERY	<u>6.3 bar</u>	lpm	70.8	81.8	121.0
AT	1750 RPM*	rated	gpm	15	19	30
		pressure	lpm	56.8	72	114
		Max.	psi	2000	1500	1000
	MPENSATED	IVIAX.	bar	160	103	69
	ESSURE	Rated	psi	2000	1500	1000
	NGES	Raleu	bar	138	103	69
	NGLO	Min.	psi	400	400	500
		IVIIII.	bar	28	28	35
	ERATING	Ν	1in. rpm		1400	
-	EEDS**		ted rpm		1750	
			ax. rpm	2400	2400	1800
PO	WER INPUT AT RATE	ED	hp	20	19	20
	OW & PRESSURE (1)		kW	15	14	15
	XIMUM POWER INP	UT	hp		40	
TO	DRIVE SHAFT		kW	30		
		Max.	psi			10
		-	bar		40	0.7
R	PRESSURE	Min.	in./Hg	7	7	5
SUCTION	Specif	i <u>c Gravity</u> <		-0.25	-0.25	-0.17
3		Min.	in./Hg	5	5	4
S		ic Gravity >		-0.17	-0.17	-0.13
	FLUID	Max.	ft./sec.		5	
	VELOCITY		m/sec.		1.5	
		1000 psi	gpm	0.5	0.5	0.7
Z	NOMINAL FLOW	69 bar	lpm	1.9	1.9	2.7
Å	AT DEADHEAD	1500 psi	gpm		0.8	
Ū	PRESSURE	<u>103 bar</u>	lpm		3.0	
CASE CRAIN		2000 psi	gpm	1.2	1.2	≈
N N		138 bar	lpm	4.5	4.5	~
	MAXIMUM CASE		psi		10	
	PRESSURE		bar		0.7	
WE	IGHT		<u>lbs.</u>		61	
			kg		27.6	

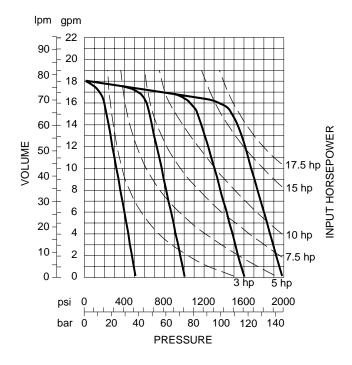
NOTES:

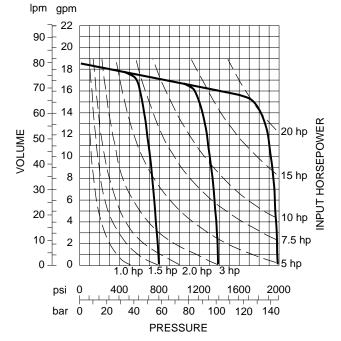
Volumetric displacement is measured displacement at 91.5 psi (6.3 bar) and rated rpm. Volumetric displacement varies with both pressure and rpm. Flow rates at any rpm other than the rated rpm may be approximated as follows:

 $Q_2 = Q_1$ (N-142)/1667 where Q_1 = Flow (gpm) at rated rpm at 91.5 psi (6.3 bar).

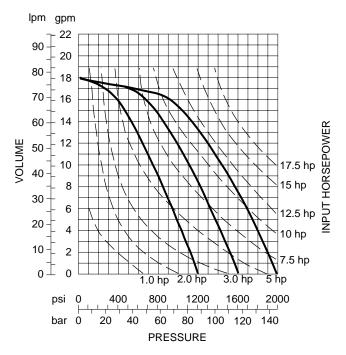

 $Q_2 = Flow (gpm)$ at N rpm. N = rpm at which Q_2 is to be determined. When operating above 1500 psi (103 bar), it is recommended that a directacting differential relief valve be used at the pump to relieve pressure spikes and surges

PVR15-20B - Maximum rpm at full displacement - 2250 rpm. For higher rpms up to 2400 rpm, pump displacement must be reduced to limit flow to 25 gpm (95 lpm) maximum.


NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

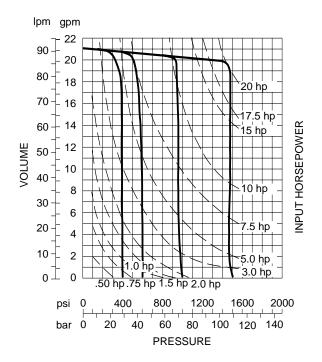

NOTE: Deadhead horsepower is read from curves at 0 gpm flow and pressure compensator setting psi.

15B20 (at 1750 rpm)



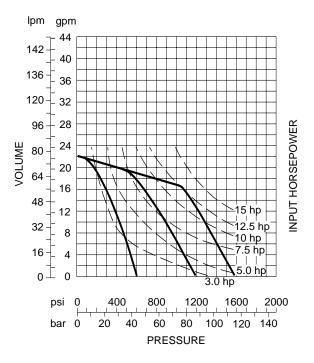
15B3L (at 1750 rpm)

15B5L (at 1750 rpm)

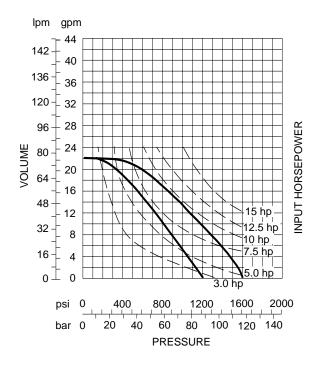


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

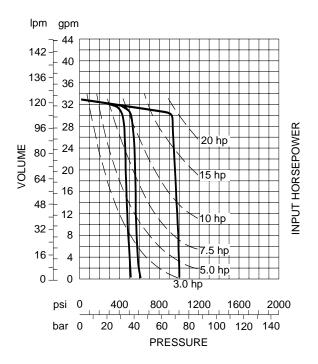
NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

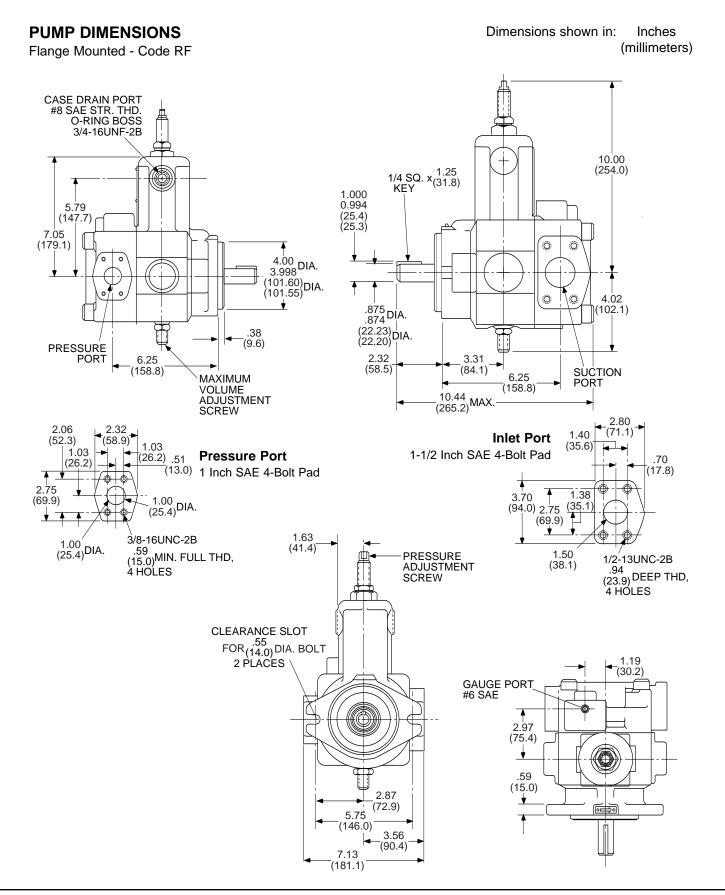

pressure compensator setting psi.

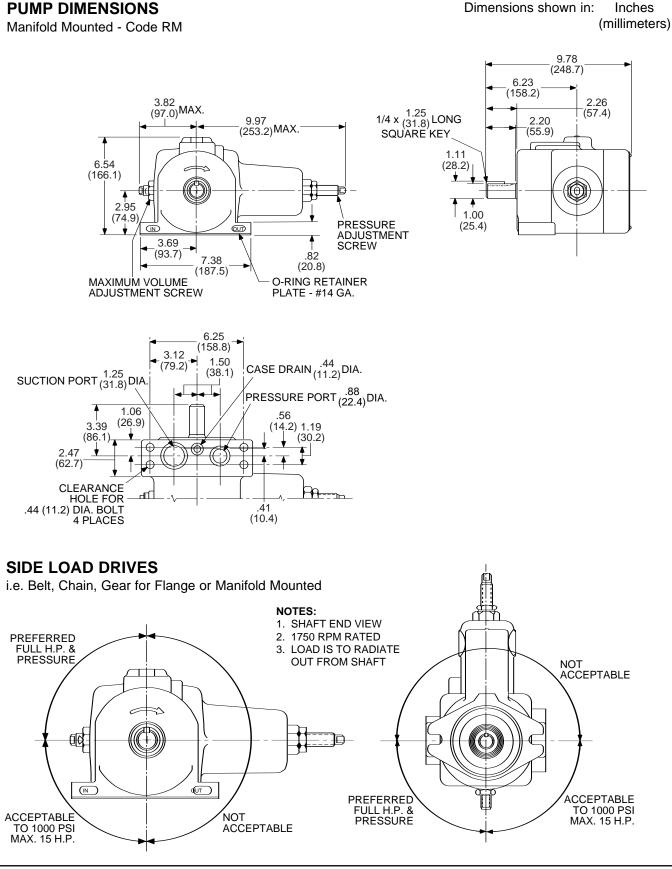
20B15 (at 1750 rpm)



NOTE: Deadhead horsepower is read from curves at 0 gpm flow and

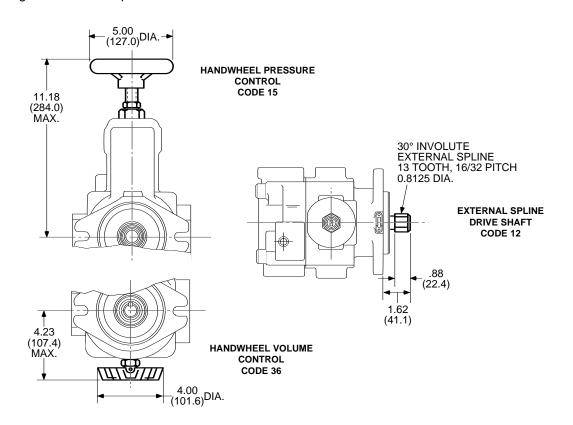

20B3L (at 1750 rpm)


20B4L (at 1750 rpm)


30B10 (at 1750 rpm)

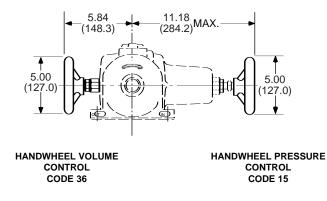
HYDRAULIC

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



MECHANICAL OPTIONS

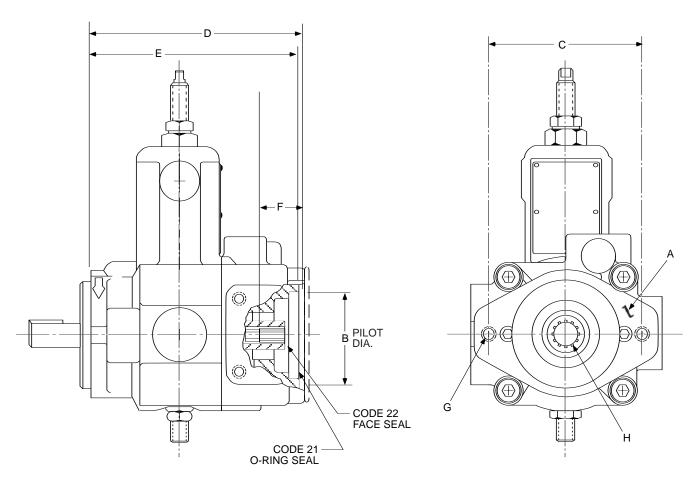
Flange Mounted Pump - Code RF


Dimensions shown in: Inches (millimeters)

HYDRAULICS

MECHANICAL OPTIONS

Manifold Mounted Pump - Code RM

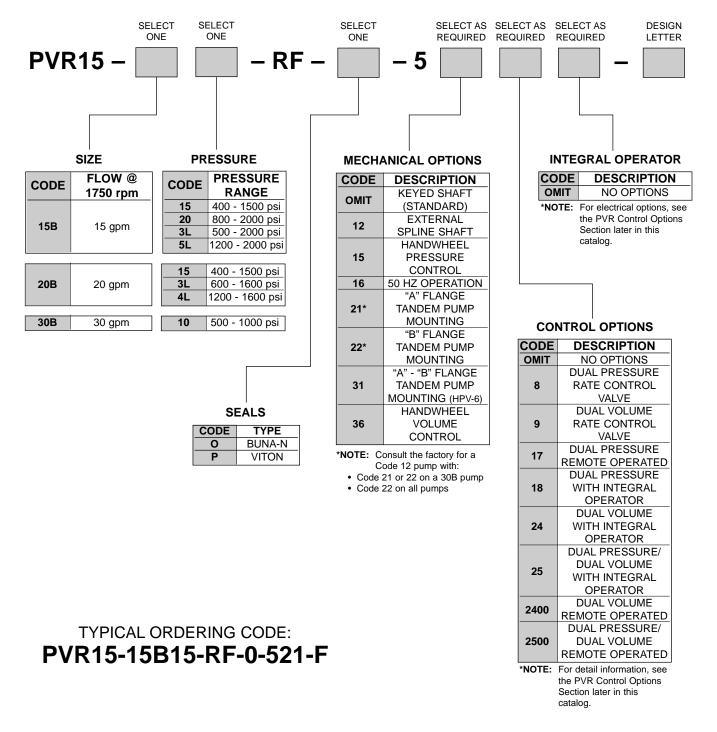


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

CODES 21 and 22 - TANDEM OPTIONS

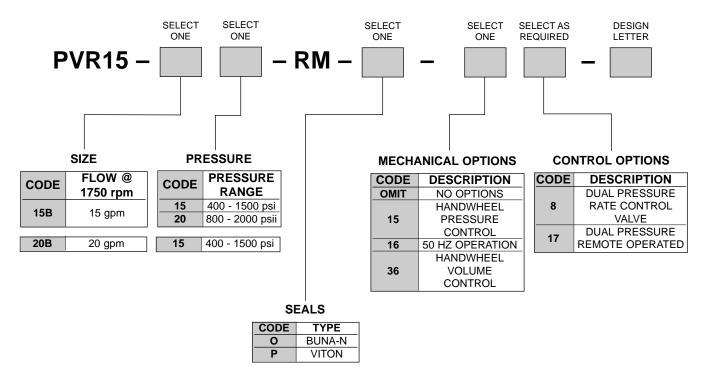
Flange Mounted Pump - Code RF Only

Dual Pump Operation Without Additional Mounting Flanges and couplings.

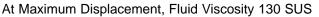

CODE	SAE 2-BOLT MOUNTING PAD				TING DIMENSIONS (millimeters)			30° INVOLUTE INTERNAL SPLINE 16/32 PITCH	MAXIMUM H.P. RATING OF INTERNAL
	A	В	С	D	E	F	G	Н	SPLINE*
21	"A" Flange	3.25 (82.6)	4.18 (106.2)	8.12 (206.2)	7.80 (198.1)	1.27 (32.3)	3/8-16 UNC x .56 (14.3)	9 Tooth 0.5625 Dia.	8.5
22	"B" Flange	4.00 (101.8)	5.75 (146.1)	9.06 (230.1)	9.06 (230.1)	1.79 (45.5)	1/2-13 UNC x 1.00 (25.4)	13 Tooth 0.8125 Dia.	30
31	"A" Flange	3.25 (82.6)	4.18 (106.2)	8.90 (226.1)	8.90 (226.1)	1.63 (41.4)	3/8-16 UNC x .56 (14.3)	13 Tooth 0.8125 Dia.	30

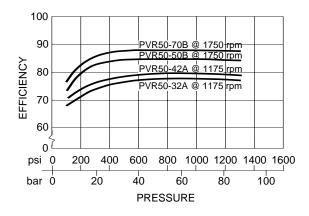
*Rating at 1750 rpm

HYDRAULICS

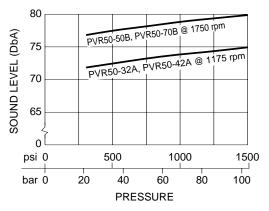

ORDERING INFORMATION

Flange Mounted - Code RF


Manifold Mounted - Code RM



TYPICAL ORDERING CODE: PVR15-15B15-RM-0-17-J



OVERALL EFFICIENCY

TYPICAL SOUND LEVEL

TYPICAL PERFORMANCE SPECIFICATIONS

					PUMF	PUMP SIZE			
				32A15	42A15	50B15	70B15		
VC	DLUMETRIC	cu.	in./rev.	7.7	9.9	7.7	9.9		
DIS	SPLACEMENT*		ml/rev.	126	162	126	162		
		91.5 psi	gpm	39	182	223	284		
PU	JMP DELIVERY	6.3 bar	lpm	148	26.5	34	41		
AT	1750 RPM*	rated	gpm	32	42	50	70		
		pressure	lpm	121	159	189	265		
		Max.	psi	1500	1500	1500	1500		
	OMPENSATED	Wax.	bar	103	103	103	103		
	RESSURE	Rated	psi	1500	1500	1500	1500		
	NGES	Raleu	bar	103	103	103	103		
	INGL5	Min.	psi	350	400	350	400		
			bar	24	27.6	24	27.6		
	PERATING	M	lin. rpm		80				
-	PEEDS**	Rat	ed rpm	1200	1200	1800	1800		
_			ax. rpm	2200	1500	2200	1800		
-	WER INPUT AT		hp	36	42	50	60		
	OW & PRESSUR		om) kW	27	31	37	45		
	XIMUM POWER		ax. hp		10				
INF	PUT TO DRIVE S	SHAFT '''	n v v	75					
		Max.	in./Hg	-		3			
	PRESSURE		bar		-0.17 -				
N S		Min.	psi	20	10	20	10		
SUCTION	Spec	ific Grav. <		1.4	.07	1.4	0.7		
19	-	Min.	<u>in./Hg</u>		5		3		
S		ific Grav. >			-0.17		-0.10		
	FLUID	Max.	ft./sec.			5			
	VELOCITY		m/sec.			.5			
Z	NOMINAL FLOV	V_Max.	gpm			3			
CRAIN	AT DEADHEAD					1			
10	PRESSURE	Min.	gpm			.5			
CASE		Pressure		9.5					
×	MAXIMUM CAS	E			10				
<u> </u>	PRESSURE		bar			.7			
W	EIGHT		<u>lbs.</u>			19			
			kg		5	4			

NOTES:

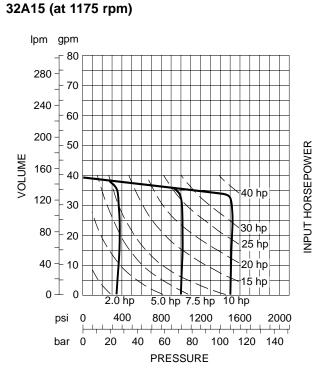
Volumetric displacement is measured displacement at 91.5 psi (6.3 bar) and rated rpmper ANSI specification. Volumetric displacement varies with both pressure and rpm. Flow rates at any rpm other than the rated rpm may be approximated as follows:

 $Q_2 = Q_1 (N-142)/1667$ where $Q_1 =$ Flow (gpm) at rated rpm at 91.5 psi (6.3 bar).

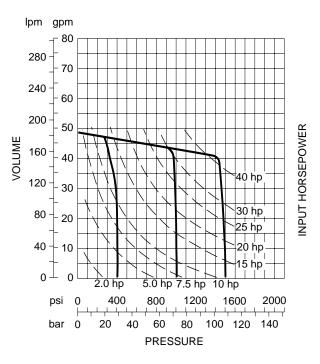
Q₂ = Flow (gpm) at N rpm.

N = rpm at which Q_2 is to be determined. When operating above 1500 psi (103 bar), it is recommended that a direct acting differential relief valve be used at the pump to relieve pressure spikes and surges

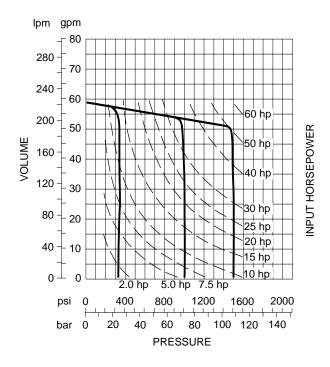
Maximum rpm at full displacement - 1900 rpm. For higher rpms up to 2000 rpm, pump displacement must be reduced to limit flow to 60 gpm (227 lpm) maximum.

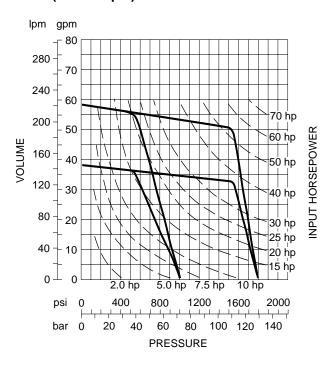

PRESSURE and VOLUME ADJUSTMENT SENSITIVITY

		PUMP SIZE	32A15	42A15	50B15	70B15	
PRESSURE	Press Change/Turn	ı psi (bar)	115	(8.0)	135	(9.4)	
ADJUSTMENT	Max.Torque	ft./lbs.(kg/m)	26.5 (13.7)				
VOLUME	Flow Change/Turn	gpm (lpm)	14 (53.0)	22 (83.0)		
	Min. Flow Adjust.	gpm (lpm)	6.0 (22.7)	8.0 (30.3)	9.5 (36.0)	12.5 (47.0)	
ADJUSTMENT	Max. Torque	ft./lbs. (kg/m)	28 (3.9)	16 (2.2)	28 (3.9)	16 (2.2)	

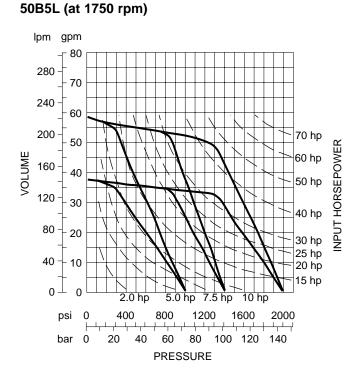

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.

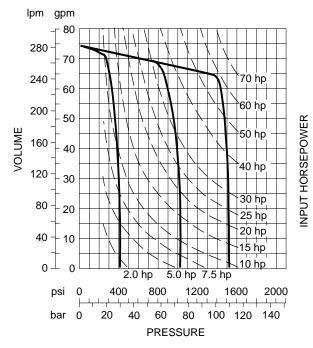

NOTE: Deadhead horsepower is read from curves at 0 gpm flow and pressure compensator setting psi.


42A15 (at 1175 rpm)

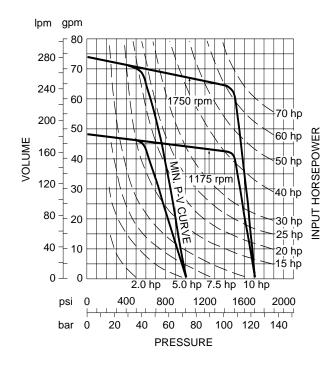
50B15 (at 1750 rpm)

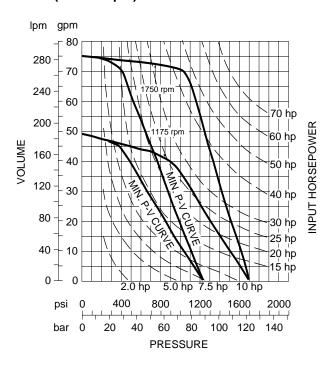


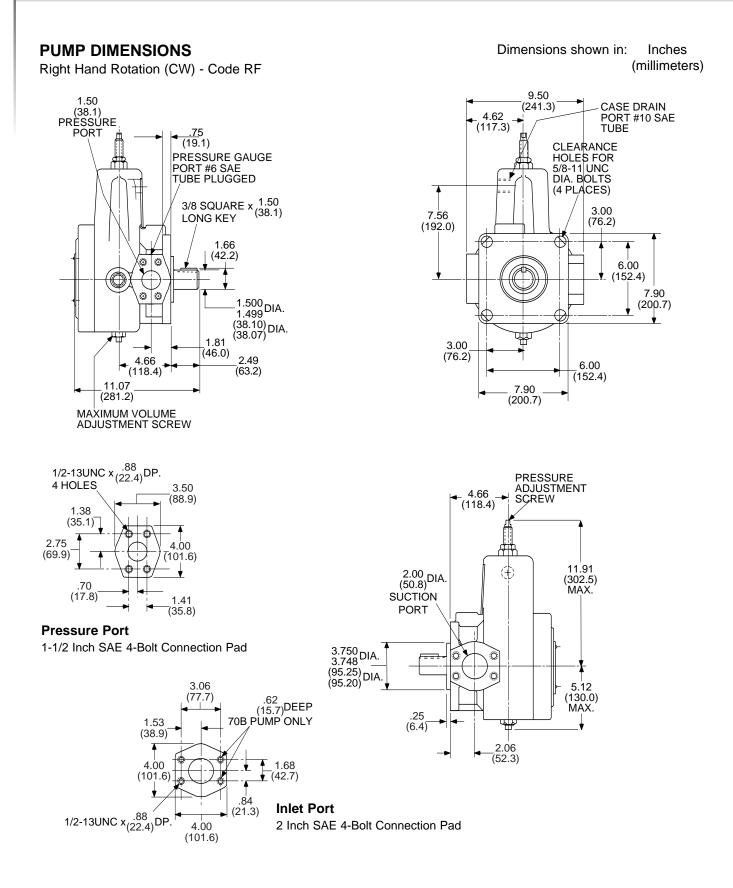
50B3L (at 1750 rpm)



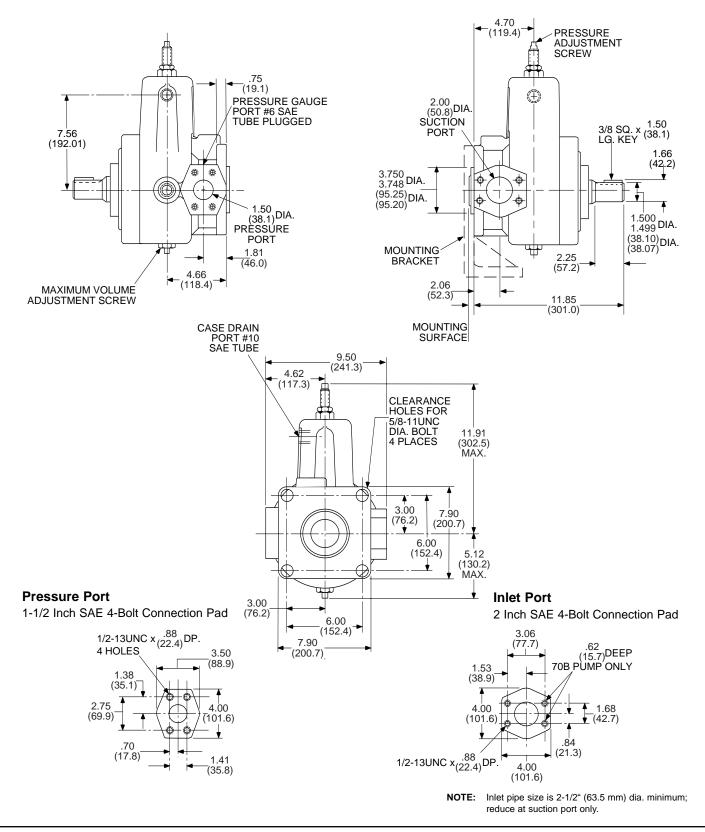
- NOTE: Typical performance curves are based on ISO VG46 oil at 120° F. (49° C.). Above 400 SUS (84 CS), add 2% hp/100 SUS.
- NOTE: Deadhead horsepower is read from curves at 0 gpm flow and


70B15 (at 1750 rpm)


pressure compensator setting psi.

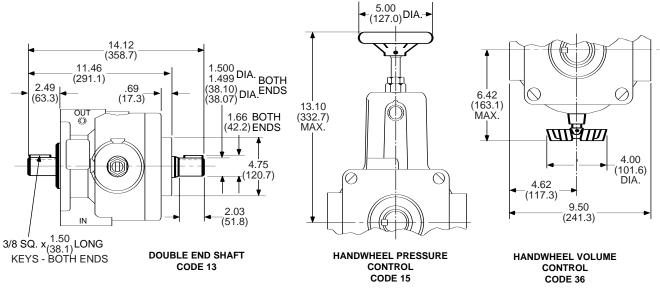

70B3L (at 1750 rpm)

70B5L (at 1750 rpm)


VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

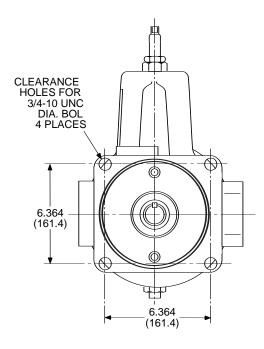
Dimensions shown in: Inches (millimeters)

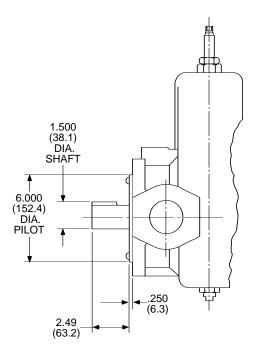
HYDRAULICS



VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

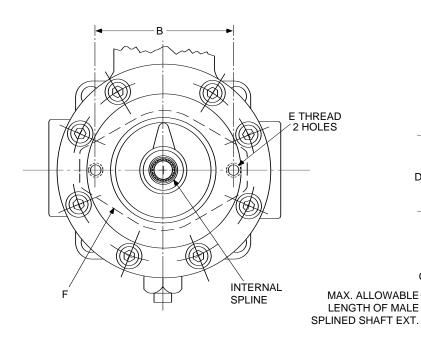
MECHANICAL OPTIONS

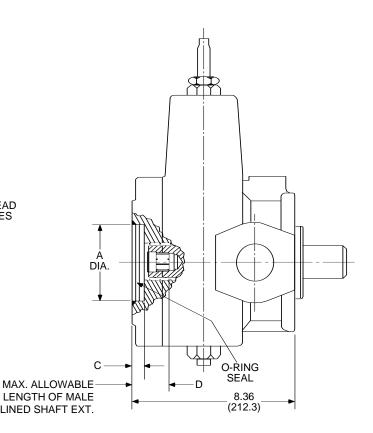

HYDRAULICS


Dimensions shown in: Inches (millimeters)

NOTE: Maximum input horsepower for double end shaft: Primary pump: 100 hp at rated rpm. Secondary pump: 50 hp at rated rpm.

SAE D Mount - Code RFD (Right Hand Rotation Only)

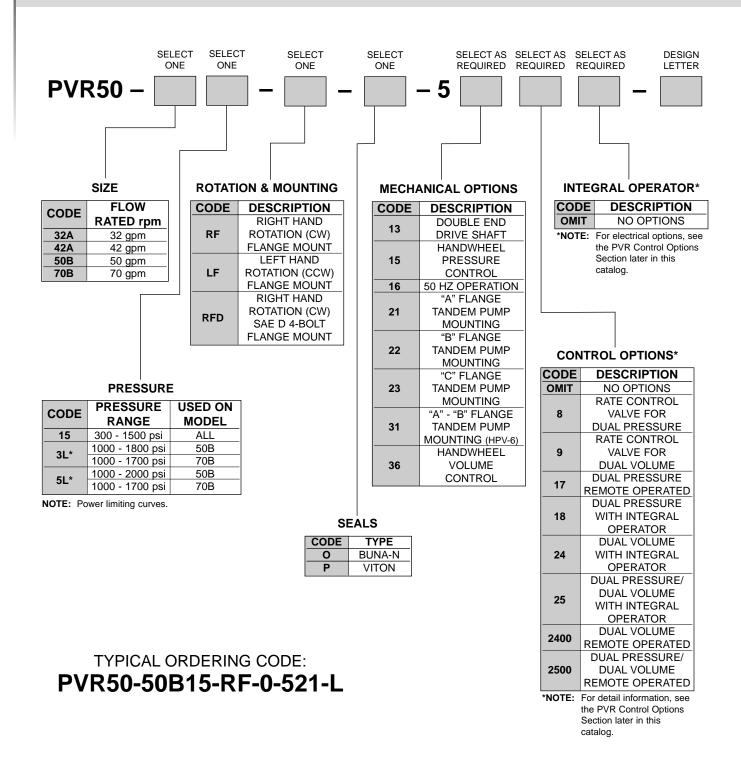



HYDRAULICS

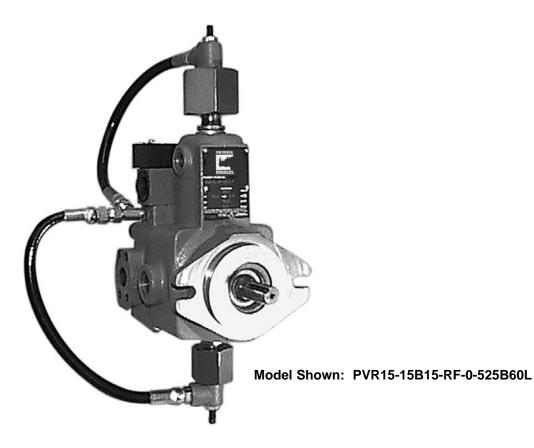
CODES 21, 22, 23 and 31 - TANDEM OPTIONS

Flange Mounted Pump - Code RF Only

Dual Pump Operation Without Additional Mounting Flanges and couplings.



CODE	SAE 2-BOLT MOUNTING PAD		DI	MENSIO	NS	Inches (millimeters)	30° INVOLUTE INTERNAL SPLINE	MAXIMUM H.P. RATING OF INTERNAL
	F	Α	В	С	D	E Thread		SPLINE*
21	"A" Flange	3.25 (82.6)	4.18 (106.2)	.291 (7.4)	1.27 (32.3)	3/8-16 UNC x .81 (20.6)	9 Tooth 16/32 Pitch 0.5625 Dia.	8.5
22	"B" Flange	4.00 (101.6)	5.75 (146.1)	.50 (12.7)	1.64 (41.7)	1/2-13 UNC x .88 (22.4)	9 Tooth 16/32 Pitch 0.5625 Dia.	30
23	"C" Flange	5.00 (127.0)	7.13 (181.1)	.55 (14.0)	1.65 (41.9)	5/8-11 UNC	14 Tooth 12/24 Pitch 1.1667 Dia.	43
31	"A" Flange	3.25 (82.6)	4.18 (106.2)	.50 (12.7)	1.64 (41.7)	3/8-16 UNC x .81 (20.6)	13 Tooth 16/32 Pitch 0.8125 Dia.	30

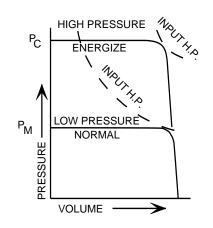

*Rating at 1750 rpm

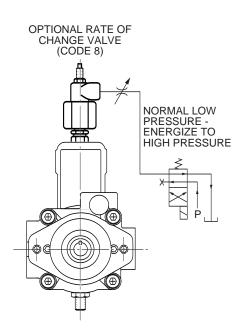
VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

CONTROL OPTIONS

FEATURES

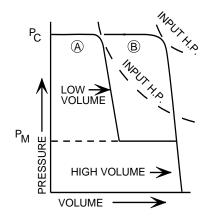
- High and low field-adjustable pressure levels.
- High and low field-adjustable volume levels.
- Field-adjustable pressure rate change between high and low levels.
- Field-adjustable acceleration and deceleration rates between high and low volume levels.
- Pump mounted control valve, or pilot signal from a remote source.
- All combinations of two pressure levels and two volume levels possible.

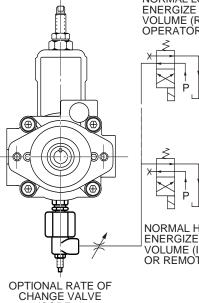

BENEFITS


- Replace dual flow valve circuits ... reduce overall valve count.
- Replace high-low pressure circuits ... eliminate multiple pumps and pressure intensifiers.
- Reduce system shock by smoothly accelerating and decelerating loads and gradually increasing and decreasing pressures.
- Reduce overall system costs.
- Energy efficient ... use only the power required for the job.
- Available as a field installed option.

CONTROL OPTIONS

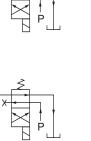
DUAL PRESSURE CONTROL


- Two constant pressure levels; field adjustable to meet system requirements.
- · Pressure compensated variable flow; zero to maximum gpm.
- · Pump mounted control valve or remote pilot signal.

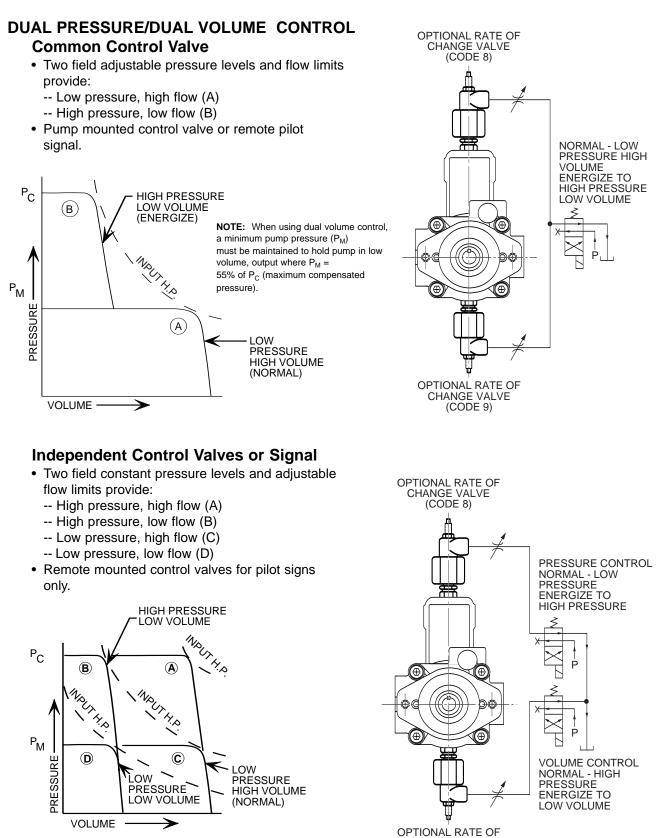


DUAL VOLUME CONTROL

- · Constant pressure; field adjustable to meet system requirements.
- · Two field adjustable flow limits;
 - -- Low limit (A) -- High limit (B)
- · Pump mounted control valve or remote pilot signal.

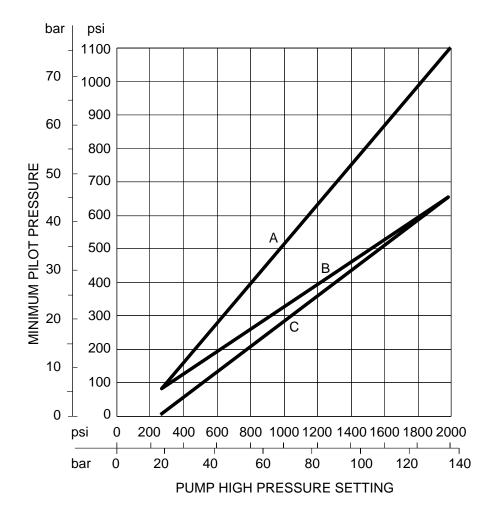


NOTE: When using dual volume control, a minimum pump pressure (P_M) must be maintained to hold pump in low volume, output where P_M = 55% of P_C (maximum compensated pressure).


(CODE 9)

NORMAL LOW VOLUME -ENERGIZE TO HIGH VOLUME (REMOTE OPERATOR ONLY)

NORMAL HIGH VOLUME -ENERGIZE TO LOW VOLUME (INTEGRAL OR REMOTE OPERATION)


NOTE: When using dual volume control, a minimum pump pressure (P_M) must be maintained to hold pump in low volume, output where P_M = 55% of P_C (maximum compensated pressure).

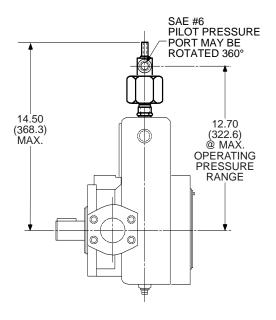
CONTINENTAL HYDRAULICS VANE PUMPS

CHANGE VALVE (CODE 9) CONTROL OPTIONS

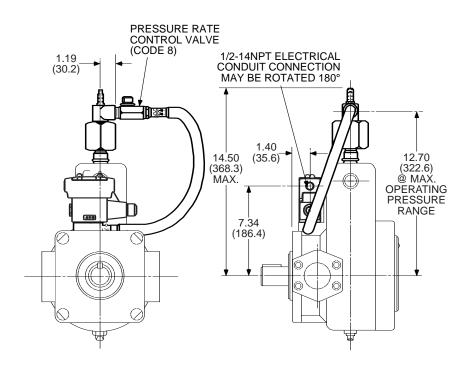
HYDRAULICS

CONTROL PILOT PRESSURES

PUMP	CONTROL	PILOT	CURVE SOURCE
6	PRESSURE	REMOTE	С
	PRESSURE	REMOTE	В
45	PRESSURE	INTEGRAL	-
15		REMOTE	Α
	VOLUME	INTEGRAL	A
	PRESSURE	REMOTE	A
50	PRESSURE	INTEGRAL	_
50		REMOTE	A
	VOLUME	INTEGRAL	A


CONTROL OPTIONS

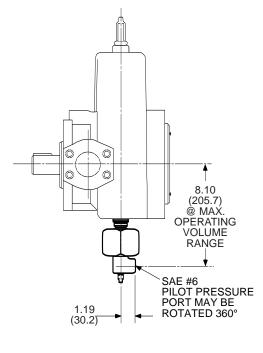
HYDRAULICS


DUAL PRESSURE CONTROL DIMENSIONS

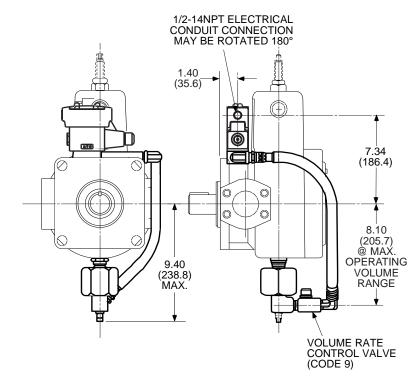
Code RF Pump Remote Operator Control - Code 17 Dimensions shown in: Inches (millimeters)

RF (CW) Rotation Shown ... LF (CCW) Dimensions Are The Same

Integral Operator Control* - Code 18



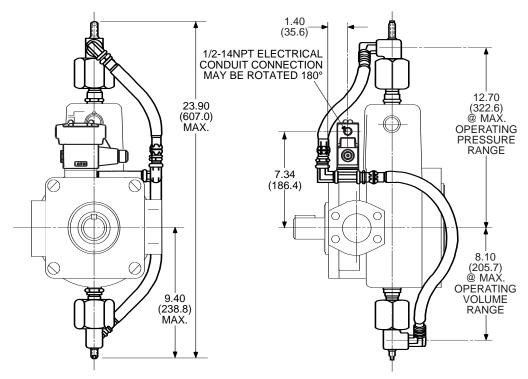
CONTROL OPTIONS


DUAL VOLUME CONTROL DIMENSIONS

Code RF Pump Remote Operator Control - Code 2400 Dimensions shown in: Inches (millimeters)

RF (CW) Rotation Shown ... LF (CCW) Dimensions Are The Same

Integral Operator Control* - Code 24

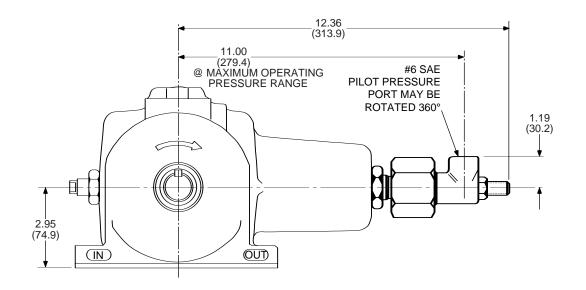


CONTROL OPTIONS

HYDRAULICS

DUAL PRESSURE/DUAL VOLUME CONTROL DIMENSIONS Dimensions shown in: Inches (millimeters) Code RF Pump **Remote Operator Control - Code 2500** 1.19 SAE #6 (30.2) PILOT PRESSURE PORT MAY BE ROTATED 360° RF (CW) Rotation Shown ... LF (CCW) Dimensions Are 12.70 (322.6) @ MAX. OPERATING PRESSURE The Same RANGE 8.10 (205.7) @ MAX. OPERATING VOLUME RANGE ٠. SAE #6 PILOT PRESSURE PORT 1.19 MAY BE ROTATED 360° (30.2)

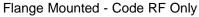
Integral Operator Control* - Code 25

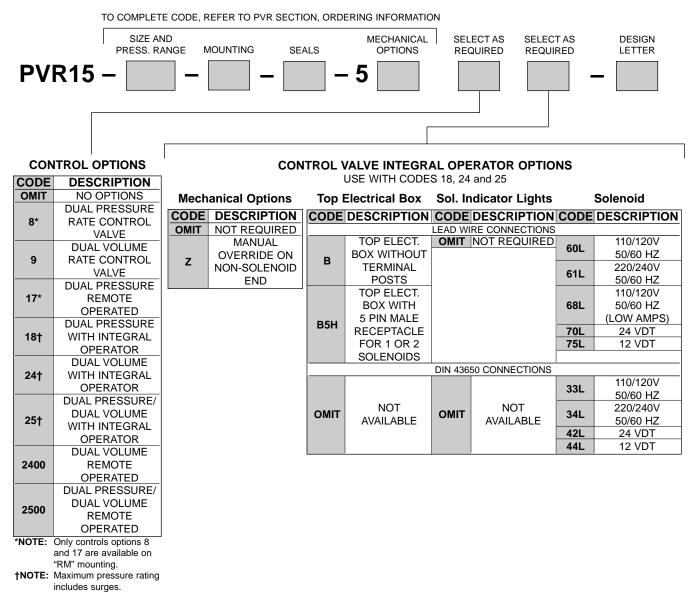


CONTROL OPTIONS

HYDRAULICS

DUAL PRESSURE CONTROL DIMENSIONS


Code RM Pump Remote Operator Control - Code 17

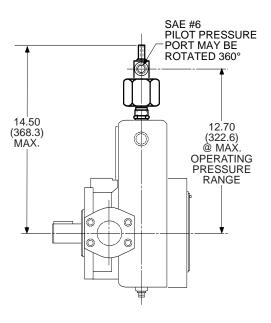


CONTROL OPTIONS

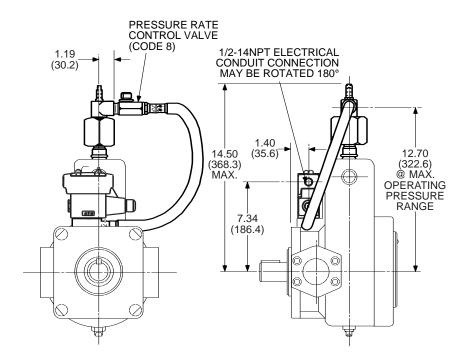
ORDERING INFORMATION

TYPICAL ORDERING CODE: PVR15-15B15-RF-O-5818B60L-F

CONTROL OPTIONS


INENTA

DUAL PRESSURE CONTROL DIMENSIONS


Remote Operator Control - Code 17

Dimensions shown in: Inches (millimeters)

RF (CW) Rotation Shown ... LF (CCW) Dimensions Are The Same

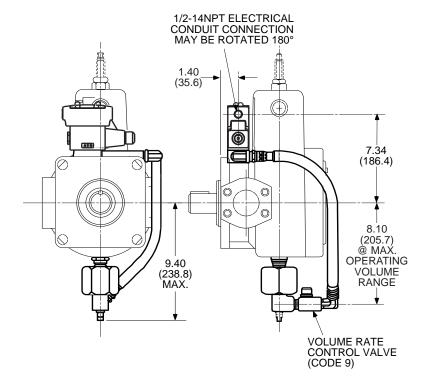
Integral Operator Control* - Code 18

CONTROL OPTIONS

DUAL VOLUME CONTROL DIMENSIONS

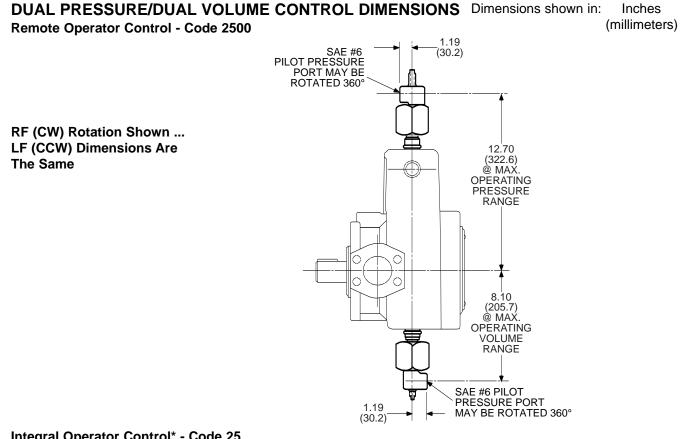
Remote Operator Control - Code 2400

RF (CW) Rotation Shown ... LF (CCW) Dimensions Are

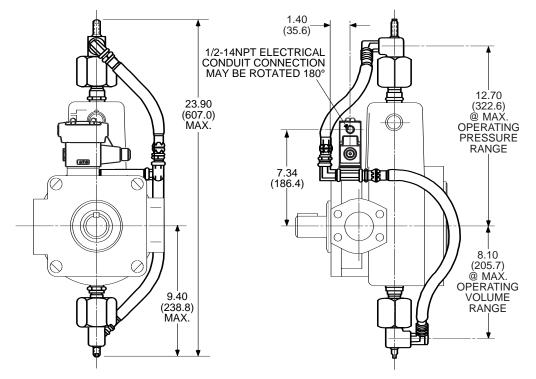

The Same

Dimensions shown in: Inches (millimeters)

REMOTE OPERATOR CODE 17

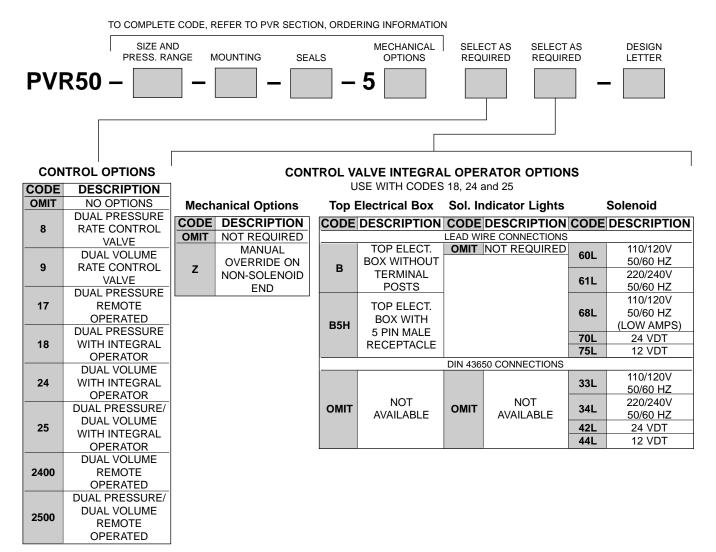

Õ O 0 8.10 (205.7) @ ΜΑΧ́. OPERATING VOLUME RANGE ¥ -SAE #6 PILOT PRESSURE PORT MAY BE 1.19 ROTATED 360° (30.2)

Integral Operator Control* - Code 24



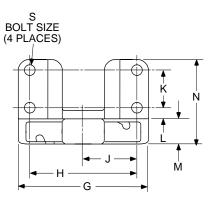
CONTROL OPTIONS

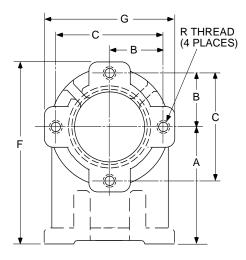
HYDRAULICS

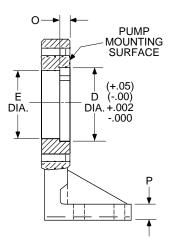

Integral Operator Control* - Code 25

CONTROL OPTIONS

HYDRAULICS

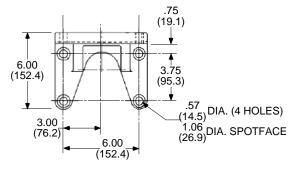

ORDERING INFORMATION

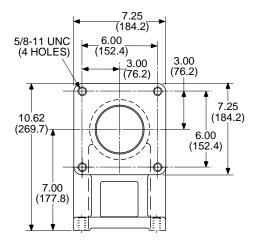


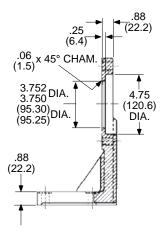

TYPICAL ORDERING CODE: PVR50-50B15-RF-O-5818B60L-L

FPVR FOOT MOUNTING BRACKETS DIMENSIONS

Dimensions shown in: Inches (millimeters)

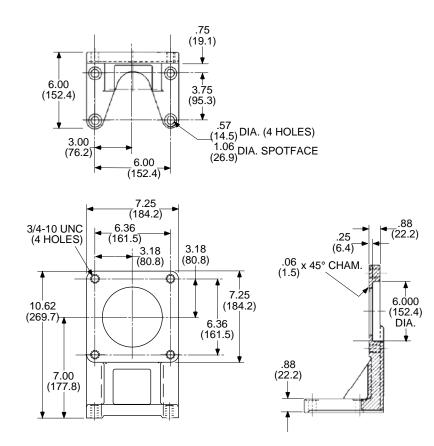



							DIMENSIONS Inches (millimeters)											
FOOT BRACKET SERIES	SAE FLANGE	A	в	с	D	E	F	G	н	J	к	L	м	N	ο	Ρ	R THREAD	S BOLT SIZE
FPVR6	Α	5.25 (133.4)	2.09 (53.1)	4.19 (106.4)	3.252 (82.6)	3.00 (76.2)	7.81 (198.4)	5.12 (130.0)	3.50 (88.9)	1.75 (44.4)	2.00 (50.8)	.48 (12.2)	1.00 (25.4)	3.98 (101.1)	.31 (7.9)	.81 (20.6)	3/8-16 UNC	3/8 ln.
FPVR15	В	6.25 (158.8)	2.87 (73.0)	5.75 (146.1)	4.00 (101.6)	4.25 (108.0)	9.69 (246.1)	6.85 (174.0)	5.75 (146.1)	2.87 (73.0)	2.01 (51.1)	.59 (15.0)	1.26 (32.0)	4.45 (113.0)	.47 (11.9)	.79 (20.1)	1/2-13 UNC	1/2 ln.


HYDRAULICS

FPVR50 FOOT MOUNTING BRACKET DIMENSIONS

Dimensions shown in: Inches (millimeters)

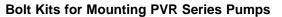


/DRAIII ICS

FPVR50D FOOT MOUNTING BRACKET DIMENSIONS SAE D Mounting

Dimensions shown in: Inches (millimeters)

HYDRAILLICS



Foot Mour	nting B	rackets		SELECT ONE	SELECT ONE	DESIGN LETTER		
			FPV	R		-		
						*NOTE:	Foot Bracket Spacers 25 H.P. motor, 1800 r	
		SIZE	MO	TOR SIZE			WEIGHT	pm, 204 1 nume.
	CODE	USED WITH MODEL	CODE	NEMA FRAME SIZE	MOTOR SPACERS (In.)	BRACKET SPACERS (In.)	lbs. / kg	
			143	143/145	1.74		10.1 / 4.6	
	6	PVR6	182	182/183	0.75		8.8 / 4.0	_
	U	FVINO	213	213/215	NONE	NONE	7.9 / 3.6	-
			254	254/256		1.00	9.8 / 4.4	
			254	254/256	NONE	NONE	16.8 / 7.6]
	15	PVR15	284	284/286		0.75	18.8 / 8.5	
			324	324/326		1.75	21.5 / 9.8	
		PVR15 W/	254	254/256	1.75	1.75	24.5 / 11.1	1
	1524	DUAL VOLUME		284/286	1.00	1.75	23.2 / 10.5	-
			284	284/286	NONE	NONE	22.8 / 10.3]
	50	PVR50	324	324/326	NONE	1.00	26.7 / 12.1	-
			364	364/365		2.00	30.6 / 13.9	-
			254	254/256	0.75		24.5 / 11.1]
		PVR50	284	284/286	NONE	NONE	22.8 / 10.3	-
	50D	SAE D	324	324/326	NONE	1.00	26.7 / 12.1	-
		MOUNTING	364	364/365		2.00	30.6 / 13.9	-
			254	254/256	3.50	2.75	35.7 / 16.2	- 1
	5024	PVR50 W/	234	284/286	2.75	2.75	33.8 / 15.3	-
	5024	DUAL VOLUME	324	324/326	1.75	2.75	32.7 / 14.8	-

TYPICAL ORDERING CODE:

FPVR15-284-

- U

SELECT ONE DESIGN LETTER

*NOTE: Mounts a PVR15 manifold pump to a MPVR15-XX-C-21 manifold.

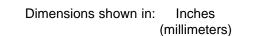
					to a MPVR15-X
COD	E USED WITH MODEL	CODE*	BOLT SIZE	QTY. of BOLTS/WASHERS	WEIGHT Ibs. / kg
1	PVR6	1	3/8-16 UNC x 1.00	4	.21/.10
6	PVR6	2	3/8-16 UNC x .88	2	.34/.15
45	PVR15 - RF	1	7/16-14 UNC x 1.50	4	.10 .05
15	PVR15 - RM	2	1/2-13 UNC x 1.25	2	.22/.10
50	PVR50	2	5/8-11 UNC x 1.75	4	.90/.40
50D	PVR50 SAE D MTG.	3	3/4-10 UNC x 1.75	4	.90/.40

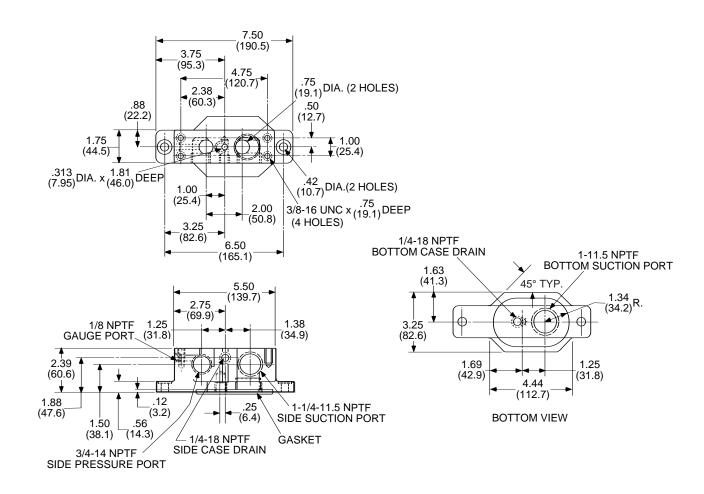
SELECT

ONE

***NOTE:** Code 1 = Pump to Manifold.

Code 2 = Pump to Foot Bracket, Flange or Front Tandem Pump.

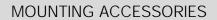

Code 3 = SAE "D" Flange; Pump to Foot Bracket or Tandem Adapter.


TYPICAL ORDERING CODE: **BPVR15-1-U-**

MOUNTING ACCESSORIES

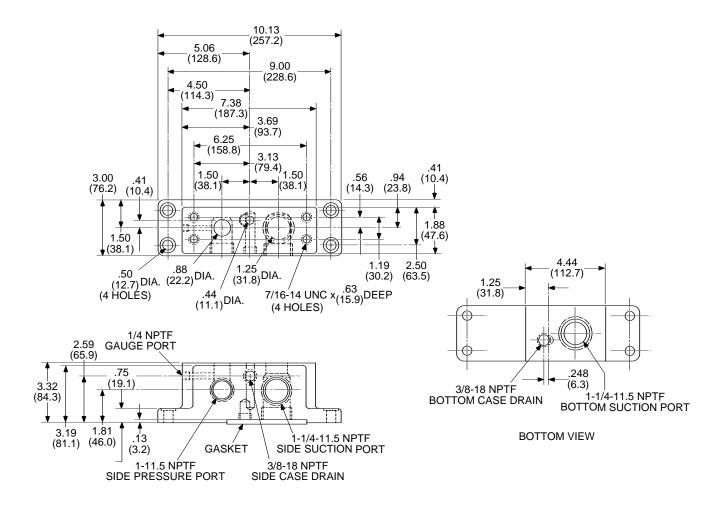
MANIFOLD DIMENSIONS

for PVR1 Pump



ORDERING INFORMATION

MF		ле Ne – С – 6 -	DESIGN LETTER
CODE	NEMA MOTOR FRAME	KIT INCLUDES*	WEIGHT lbs. / kg
143	143/145	1" MOTOR SPACERS	7.3 / 3.3
182	182/184	MANIFOLD ONLY	6.3 / 2.9


*NOTE: Kit also includes Gasket, and Plugs for gauge, suction and case drain ports.

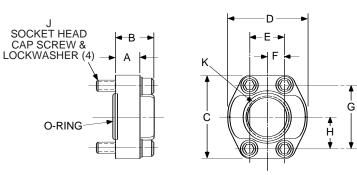
HYDRAULICS

Dimensions shown in: Inches (millimeters)

MANIFOLD DIMENSIONS for PVR15 Pump - Code RM

ORDERING INFORMATION

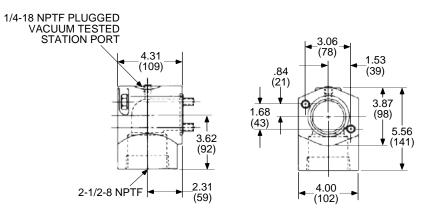
MP		DNE – C – 21	
CODE	NEMA MOTOR FRAME	KIT INCLUDES*	WEIGHT lbs. / kg
182	182/184	1.75" MOTOR SPACERS	19.6 / 8.3
213	213/215	1" MOTOR SPACERS	18.4 / 8.3
	2.0/2.0		


***NOTE:** Kit also includes Gasket, and Plugs for gauge, suction and case drain ports.

MOUNTING ACCESSORIES

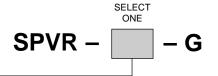
STRAIGHT FLANGES DIMENSIONS

Flange Codes 9 through 33


For Pumps Requiring SAE 4-Bolt Threaded Flanges (Mounting Bolts and Viton Seals Includes)

FLANGE			DIMENSIO					NS	Inches (millimeter		
SIZE	CODE	Α	В	С	D	E	F	G	н	J	K
4.1m	9	.97	1.38	2.75	2.31	1.03	.52	1.03	2.06		1' NPTF
1 In.	11	(24.6)	(35.1)	(69.9)	(58.7)	(26.2)	(13.2)	(26.2)	(52.3)	3/8-16 UNC x 1.75	1-5/16-12 UN SAE #16
	21	1.09	1.82	3.69	3.25	1.41	.70	1.38	2.75		1-1/4" NPTF
1-1/2 In.	25						-		-	1/2-13 UNC x 2.00	1-1/2" NPTF
	27	(27.7)	(46.2)	(93.7)	(82.6)	(35.8)	(17.8)	(35.1)	(69.9)		1-7/8-12 NC SAE #24
2 In.	22	1.09	1.82	4.00	3.81	1.68	.84	1.53	3.08	1/0 10 LINC v 1 0/4	2" NPTF
∠ IN.	33	(27.7)	(46.2)	(101.6)	(96.8)	(42.7)	(21.3)	(38.9)	(78.2)	1/2-13 UNC x 1-3/4	2 NPTF

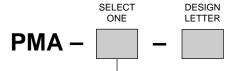
90° SUCTION FLANGE DIMENSIONS PVR50 Pump - Flange Code 37


Dimensions shown in: Inches (millimeters)

HYDRAIII IC

ORDERING INFORMATION

Flanges



CODE	SAE 4-BOLT PAD	THREAD SIZE	PUMP USED ON	OUTLET	INLET	WEIGHT lbs. / kg
9	1"	1" NPTF	PVR15	Х		
11	1"	1-15/16-12 UN 1" TUBE SIZE SAE #16	PVR15	х		1.5 / 0.7
21	1-1/2"	1-1/4" NPTF	PVR50	Х		
25	1-1/2:"	1-1/2" NPTF	PVR50	Х	Х	
27	1-1/2"	1-7/8-12 UN 1-1/2" TUBE SIZE SAE #24	PVR15 PVR50	х	х	3.0 / 1.4
33	2"	2" NPTF	PVR50		Х	3.6 / 1.6
37	2"	2-1/2" NPTF 30° ANGLE (PVR50 INLET ONLY)	PVR50-70B		х	13.4 / 6.1

TYPICAL ORDERING CODE: SPVR-9-G

ORDERING INFORMATION

Pump Mechanical Accessories

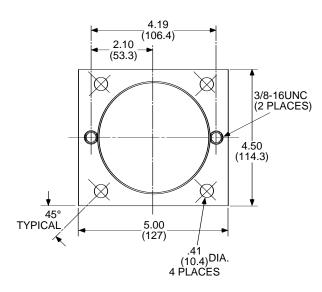
	PU	MP MODE	L (DESIGN	LETTER IN	IDICATED)	*		
CODE	DESCRIPTION	DESCRIPTION PVR1 PVR6		PVR15 - RF 15 & 20B	- RF - RF		PVR50	WEIGHT lbs. / kg
6	Volume Screw Assembly	I	А	Standard	Standard	Standard	Standard	0.3 / 0.14
15	Handwheel Pressure Assembly	N/A	N/A	А	А	А	А	0.8 / 0.36
1536	Handwheel Pressure Assembly	н	A	N/A	N/A	N/A	N/A	0.9 / 0.41
1536	Handwheel Volume Assembly	I	A	D	В	Note 1	Note 1	0.9 / 0.41
17	Remote Dual Pressure Control	Note 1	Note 1	С	А	I	I	3.6 / 1.63
24	Remote Dual Volume Control	Note 1	Note 1	А	А	Note 1	Note 1	1.9 / 0.86
*NOTE: T	he Design Letter listed is the earliest	N/A Not Appl	licable.	1	IMP	ORTANT !	1	1

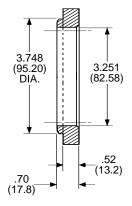
version that the assembly is physically compatible with all later models.

NOTE 1: Not Available. Please consult the factory.

Check the appropriate pump design code with the above chart list before ordering to insure installation compatibility.

NOTES: (a) Handwheel Accessory Kits contain the handwheel and a spring pin for installation on an existing Adjustment Screw. If a pump has a plug only at the volume adjustment screw location, a Volume Screw Assembly must be ordered separately. (b) For installation dimensions and product references, refer to the appropriate option modification in the PVR Vane Pump Section.


TYPICAL ORDERING CODE: PMA-17-


MOUNTING ACCESSORIES

TRANSITION PLATE

Dimensions shown in: Inches (millimeters)

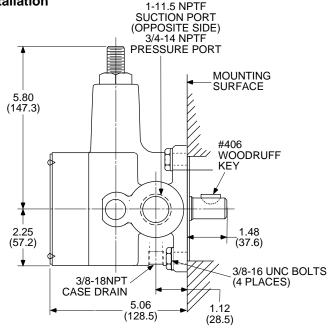
For Mounting a PVR6 SAE 2-Bolt Flange to a PVR1-RF 4-Bolt Flange Pump Existing Mounting Surface.

The Kit Includes:

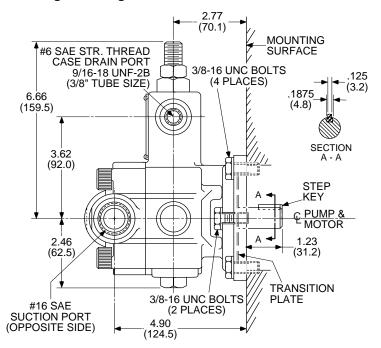
- 1 Transition Plate
- 4 Hex. Hd. Bolts 3/8-16UNC x 1-1/4
- 4 Lockwashers 3/8
- 1 3/16 x 1/8 x 1Long Step Key

NOTE: PVR6 Pump Bolts are ordered separately.

ORDERING INFORMATION Transition Plate


HYDRAULICS

TRANSITION PLATE

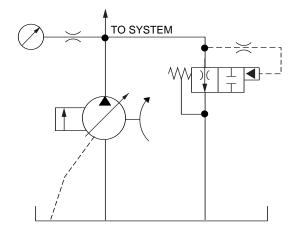

Dimensions shown in: Inches (millimeters)

For Mounting a PVR6 SAE 2-Bolt Flange to a PVR1-RF 4-Bolt Flange Pump Existing Mounting Surface.

Existing PVR1-XXX-RF-X-X Installation

TRANSITION PLATE Existing PVR6-XXX-RF-X-X Installed With a TPVR Transition Plate on an Existing Mounting Surface.

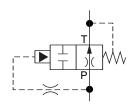
AIR BLEED VALVE



TYPICAL PERFORMANCE SPECIFICATIONS

MINIMUM FLOW RATE		8 gpm
MINIMUM	@ 8 gpm	500 psi
OPERATING	@ 15 gpm	350 psi
PRESSURE	@ 50 gpm	200 psi
MAX. OPERATING PRESSURE		3500 psi
MINIMUM PRESSURE		150 psi
TO HOLD CLOSE		
TYPICAL	@ 500 psi	30 sec.
CLOSING TIMES	@1500 psi	10 sec.
SEALS		VITON

NOTE: Data is based on ISO VG 46 oil at 120° F. (49° C.).


TYPICAL APPLICATIONS SCHEMATIC

DESCRIPTION

The air bleed valve permits easier pump priming and/or start-up under deadhead conditions. This valve is normally open to permit oil and air (if present) to pass from inlet to outlet and directly back to the tank. Pressure in the spool center section is bled via spool clearance to the no-spring end of the spool. As pressure builds, it overcomes the spring, shifts the spool to close the inlet port and allows full pump flow to the circuit.

VALVE SCHEMATIC

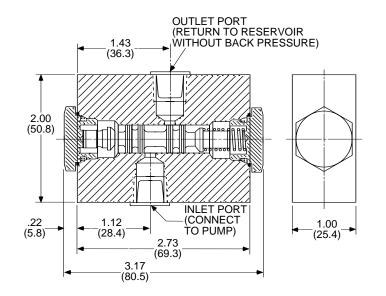
ELECTRIC MOTOR PRIME MOVER

In this circuit, the valve is used to automatically purge the air in the circuit. It will automatically block flow through it in a short period of time.

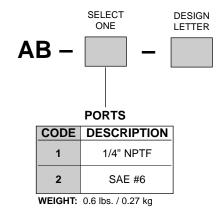
ENGINE PRIME MOVER

Here the valve passes flow for a short time allowing an internal combustion engine to come up to speed. This would eliminate using a separate open center valve for this purpose.

NOTE:


The outlet line should be piped below the oil level to prevent foaming of the oil.

MOUNTING ACCESSORIES


HYDRAULICS

VALVE DIMENSIONS

Dimensions shown in: Inches (millimeters)

ORDERING INFORMATION

TYPICAL ORDERING CODE: **AB-1-**

MOUNTING ACCESSORIES

TANDEM PUMP OPTIONS

BENEFITS

- Permits multiple pump operation without additional mounting flanges and couplings..
- Reduce system costs. Space saver -- one • power unit where two or more were necessary. Smaller electric motor.
- Reduce operating costs. More efficient in high-low system than single pressure compensated pump.

PVR50/PVR6 Tandem Mounting Shown

	FRON	T PUMP			R		P WITH O		DE 12		
BAS	SIC CODE	OPTION	MAXIMUM	VANE		PISTON					
		CODE*	H.P.**	PVR6	PVR15	HPV6	HPV10	HPV15	HPV20	HPV29	
	PVR6	21	8.5		N/A	N/A	N/A	N/A	N/A	N/A	
		21	8.5		N/A	N/A	N/A	N/A	N/A	N/A	
	PVR15-RF	22	30	N/A		N/A			N/A	N/A	
VANE		31	30	N/A	N/A		N/A	N/A	N/A	N/A	
		21	7.5		N/A	N/A	N/A	N/A	N/A	N/A	
	PVR50	22	20	N/A		N/A			N/A	N/A	
	FVKJU	23	43	N/A	N/A	N/A	N/A	N/A			
		31	20	N/A	N/A	N/A		N/A	N/A	N/A	

TANDEM PUMP COMBINATIONS

*NOTE: Option Code 12 is a male spline shaft. Option Code 21 is a SAE A mounting pad. Option Code 22 is a SAE B mounting pad. Option Code 23 is a SAE C mounting pad.

Option Code 31 is a SAE A mounting pad with a SAE B spline shaft.

**NOTE: Maximum horsepower transfer to rear pump at 1750 rpm.

NOTE: See the PVR Vane Pump section for product information and codes.

Pump mounting bolts are ordered separately. See the Mounting Accessories section for information and codes.

POWRFLOW[™] PVR SERIES VANE PUMPS

PRESSURE COMPENSATED VANE PUMPS FOR THE MOST DEMANDING APPLICATIONS

PowrFlow[™] Vane Pumps -Just What You Need!

Continental Hydraulics PowrFlow[™] PVR Vane Pumps give you all of what you need, and less of what you don't want - such as heat and complexity.

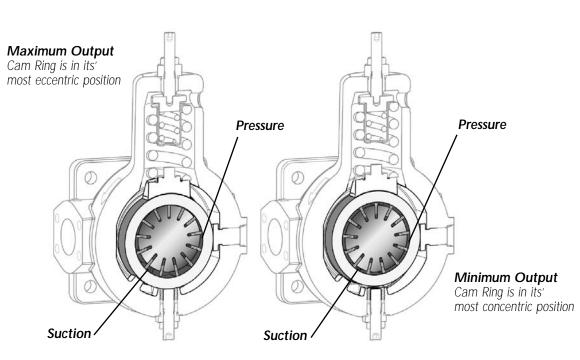
Variable volume, pressure compensated design maintains constant pressure, while matching system flow demands.

Pressure relief valves are eliminated, which simplifies circuit design. There's less heat build-up, so heat exchangers can be smaller - or eliminated entirely. PVR Vane Pumps use smaller electric motors than fixed displacement vane pumps, which reduces the cost of installation and operation.

The result is a simpler, more energy efficient system, that accurately matches fluid power volume to the job, while maintaining constant pressure.

How Does Pressure Compensation Work?

As the PVR Vane Pump rotor turns clockwise, the volume between two vanes (a segment) increases at the suction porting. When segments enter the pressure port area, volume is reduced, forcing fluid through the pressure port.


Maximum output occurs when the pressure ring is at its' most eccentric position, as shown in the illustration below. When system requirements are less than maximum pump output, system pressure forces the pressure ring up against the spring, reducing eccentricity, which reduces flow.

When system volume demand falls to zero, system pressure drives the ring to a concentric position. This changes the displacement to zero, while system pressure is unchanged. Constant pressure is maintained whether at zero or full displacement, so system response is fast.

Exclusive 3 Year Warranty

Continental Hydraulics Division warrants all vane pumps supplied by Continental Hydraulics against defects in material and workmanship under normal use and service for three years from the date of shipment.

This warranty does not cover ordinary wear and tear, abuse, misuse, overloading, altered products, use of improper fluid, or use of materials not of Continental Hydraulics manufacture or supply.

POWRFLOW[™] PVR SERIES VANE PUMPS

PRESSURE COMPENSATED VANE PUMPS FOR THE MOST DEMANDING APPLICATIONS

Why settle for "close enough" when you need hydraulics?

Continental Hydraulics offers a complete line of products to meet your need for reliable, precise fluid power. In addition to the Vane Pumps shown in this catalog, Continental also offers piston pumps, a full line of control valves, modular stack valves, integrated hydraulic circuits, and hydraulic power units.

Continental's products are used in diverse applications such as plastic molding machinery, machine tools, pulp and paper machines, marine auxiliary power controls and deck handling equipment, and masonry product production equipment. **Distributors who know how to help** — Anyone can say, "Here's our catalog, take your pick." Continental Distributors work with you to find out what you need, and with our engineers to make sure you get it.

Service and support —To provide maximum service and assistance, Continental Hydraulics maintains a strong distribution network, with representatives throughout North America and around the world. The average Continental Distributor has been with us for 15 years. He's got repair and replacement parts, and the skill to solve your hydraulics problem. Our Distributors work hand-in-hand with our Engineers to select components and build systems that will meet your toughest specifications. And they'll suggest creative solutions that can help save money or enhance performance.

Whether you need a complete hydraulic power supply or a single pump, come to Continental.

5505 West 123rd Street • Savage, MN 55378-1299 • Ph: 952.895.6400 • Fax: 952.895.6444 • www.continentalhydraulics.com Form No. 260086 Rev. 7/06 © 2006 Continental Hydraulics. All rights reserved. Product specifications and appearance are subject to change without notice.